
Scaling up to Billions of Cells with DATASPREAD:

Supporting Large Spreadsheets with Databases

Mangesh Bendre, Vipul Venkataraman, Xinyan Zhou
Kevin Chen-Chuan Chang, Aditya Parameswaran

University of Illinois at Urbana-Champaign (UIUC)
{bendre1 | vvnktrm2 | xzhou14 | kcchang | adityagp}@illinois.edu

ABSTRACT
Spreadsheet software is the tool of choice for ad-hoc tabular data
management, manipulation, querying, and visualization with adop-
tion by billions of users. However, spreadsheets are not scalable,
unlike database systems. We develop DATASPREAD, a system that
holistically unifies databases and spreadsheets with a goal to work
with massive spreadsheets: DATASPREAD retains all of the ad-
vantages of spreadsheets, including ease of use, ad-hoc analysis
and visualization capabilities, and a schema-free nature, while also
adding the scalability and collaboration abilities of traditional re-
lational databases. We design DATASPREAD with a spreadsheet
front-end and a regular relational database back-end. To integrate
spreadsheets and databases, in this paper, we develop a storage
and indexing engine for spreadsheet data. We first formalize and
study the problem of representing and manipulating spreadsheet
data within a relational database. We demonstrate that identifying
the optimal representation is NP-HARD via a reduction from par-
titioning of rectangles; however, under certain reasonable assump-
tions, can be solved in PTIME. We develop a collection of mech-
anisms for representing spreadsheet data, and evaluate these repre-
sentations on a workload of typical data manipulation operations.
We augment our mechanisms with novel positionally-aware index-
ing structures that further improve performance. DATASPREAD can
scale to billions of cells, returning results for common operations
within seconds. Lastly, to motivate our research questions, we per-
form an extensive survey of spreadsheet use for ad-hoc tabular data
management.

1. INTRODUCTION
Spreadsheet software, from the pioneering VisiCalc [12] to Mi-

crosoft Excel [2] and Google Sheets [1], have found ubiquitous
use in ad-hoc manipulation, management, and analysis of tabular
data. The billions who use spreadsheets take advantage of not only
its ad-hoc nature and flexibility but also the in-built statistical and
visualization capabilities. Spreadsheets cater to both novice and
advanced users, spanning businesses, universities, organizations,
government, and home.

Yet, this mass adoption of spreadsheets breeds new challenges.
With the increasing sizes and complexities of data sets, as well as
types of analyses, we see a frenzy to push the limits: users are strug-
gling to work with spreadsheet software on large datasets; they are
trying to import large data sets into Excel (e.g., billions of gene-
gene interactions) and are failing at doing so. In response, spread-
sheet softwares are stretching the size of data they can support; e.g.,
Excel has lifted its size limits from 65k to 1 million rows, and added
Power Query and PowerPivot [46, 45] to support one-shot import of
data from databases in 2010; Google Sheets has expanded its size
limit to 2 million cells. Despite these developments, these moves
are far from the kind of scale, e.g., beyond memory limits, and

functionality, e.g., expressiveness, that databases natively provide.
This discussion raises the following question: can we leverage

relational databases to support spreadsheets at scale? That is, can
we retain the spreadsheet front-end that so many end-users are so
comfortable with, while supporting that front-end with a standard
relational database, seamlessly leveraging the benefits of scalability
and expressiveness?

To address this question, our first challenge is to efficiently rep-
resent spreadsheet data within a database. First, notice that while
databases natively use an unordered “set” semantics, spreadsheets
utilize position as a first-class primitive, thus it is not natural to
represent and store spreadsheet data in a database. Further, spread-
sheets rarely obey a fixed schema — a user may paste several “tab-
ular” or table-like regions within a spreadsheet, often interspersed
with empty rows or columns. Users may also embed formulae
into spreadsheets, along with data. This means that considering
the entire sheet as a single relation, with rows corresponding to
rows of the spreadsheet, and columns corresponding to columns
of the spreadsheet, can be very wasteful due to sparsity. At the
other extreme, we can consider only storing cells of the spreadsheet
that are filled-in: we can simply store a table with schema (row
number, column number, value): this can be effective for highly
sparse spreadsheets, but is wasteful for dense spreadsheets with
well-defined tabular regions. One can imagine hybrid represen-
tation schemes that use both “tabular” and “sparse” representation
schemes as well or schemas that take access patterns, e.g., via for-
mulae, into account. In this paper, we show that it is NP-HARD
to identify the optimal storage representation, given a spreadsheet.
Despite this wrinkle, we characterize a certain natural subset of
representations for which identifying the optimal one is in fact,
PTIME; furthermore, we identify a collection of optimization tech-
niques that further reduce the computation complexity to the point
where the optimal representation can be identified in the time it
takes to make a single pass over the data.

The next challenge is in supporting operations on the spread-
sheet. Notice first that the most primitive operation on a spread-
sheet is scrolling to an arbitrary position on a sheet. Unlike tra-
ditional databases, where order is not a first class citizen, spread-
sheets require positionally aware access. This motivates the need
for positional indexes; we develop and experiment with indexing
mechanisms that adapt traditional indexing schemes, to take posi-
tion into account. Furthermore, we need to support modifications to
the spreadsheet. Note that even a small modification can be rather
costly: inserting a single row can impact the row number of all sub-
sequent rows. How do we support such modifications efficiently?
We develop positional mapping schemes that allow us to avoid the
expensive computation that results from small modifications.

By addressing the aforementioned challenges, we answer the
question of whether we can leverage relational databases to sup-
port spreadsheets at scale in the affirmative in this paper. We build

1

a system, DATASPREAD, that can not only efficiently support op-
erations on billions of records, but naturally incorporates relational
database features such as expressiveness and collaboration support.
DATASPREAD uses a standard relational database as a backend
(currently PostgreSQL, but nothing ties us to that database), with
a web-based spreadsheet system [3] as the frontend. By using a
standard relational database, with no modifications to the underly-
ing engine, we can just seamlessly leverage improvements to the
database, while allowing the same data to be used by other appli-
cations. This allows a clean encapsulation and separation of front-
end and back-end code, and also admits portability and a simpler
design. DATASPREAD is fully functional — the DATASPREAD re-
sources, along with video and code can be found at dataspread.
github.io. We demonstrated a primitive version of DATASPREAD
at the VLDB conference last year [11].

While there have been many attempts at combining spreadsheets
and relational database functionality, ultimately, all of these at-
tempts fall short because they do not let spreadsheet users perform
ad-hoc data manipulation operations [47, 48, 28]. Other work sup-
ports expressive and intuitive querying modalities without address-
ing scalability issues [9, 5, 20], addressing an orthogonal problem.
There have been efforts that enhance spreadsheets or databases
without combining them [38]. Furthermore, while there has been
work on array-based databases, most of these systems do not sup-
port edits: for instance, SciDB [13] supports an append-only, no-
overwrite data model. We describe related work in more detail in
Section 8.
Rest of the Paper. The outline of the rest of the paper is as follows.

• We begin with an empirical study of four real spreadsheet
datasets, plus an on-line user survey, targeted at understand-
ing how spreadsheets are used for data analysis in Section 2.

• Then, in Section 3, we introduce the notion of a conceptual
data model for spreadsheet data, as well as the set of opera-
tions we wish to support on this data model.

• In Section 4, we propose three primitive data models for sup-
porting the conceptual data model within a database, along
with a hybrid data model that combines the benefits of these
primitive data models. We demonstrate that identifying the
optimal hybrid data model is NP-HARD, but we can develop
a PTIME dynamic programming algorithm that allows us to
find an approximately optimal solution.

• Then, in Section 5, we motivate the need for, and develop
indexing solutions for positional mapping—a method for re-
ducing the impact of cascading updates for inserts and deletes
on all our data models.

• We give a brief overview of the system architecture from the
perspective of our data models in Section 6. We also describe
how we seamlessly support standard relational operations in
DATASPREAD.

• We perform experiments to evaluate our data models and po-
sitional mapping schemes in Section 7, and discuss related
work in Section 8.

2. SPREADSHEET USAGE IN PRACTICE
In this section, we empirically evaluate how spreadsheets are

used for data management. We use the insights from this evalu-
ation to both motivate the design decisions for DATASPREAD, and
develop a realistic workload for spreadsheet usage. To the best of
our knowledge, no such evaluation, focused on the usage of spread-
sheets for data analytics, has been performed in the literature.

We focus on two aspects: (a) structure: identifying how users
structure and manage data on a spreadsheet, and (b) operations: un-
derstanding the common spreadsheet operations that users perform.

To study these two aspects, we first retrieve a large collection
of real spreadsheets from four disparate sources, and quantitatively
analyze them on different metrics. We supplement this quantitative
analysis with a small-scale user survey to understand the spectrum
of operations frequently performed. The latter is necessary since
we do not have a readily available trace of user operations from
the real spreadsheets (e.g., indicating how often users add rows or
columns, or edit formulae.)

We first describe our methodology for both these evaluations,
before diving into our findings for the two aspects.

2.1 Methodology
As described above, we have two forms of evaluation of spread-

sheet use: the first, via an analysis of spreadsheets, and the second,
via interviews of spreadsheet users. The datasets can be found at
dataspread.github.io.

2.1.1 Real Spreadsheet Datasets
For our evaluation of real spreadsheets, we assemble four datasets

from a wide variety of sources.
Internet. This dataset was generated by crawling the web for Excel
(.xls) files, using a search engine, across a wide variety of domains.
As a result, these 53k spreadsheets vary widely in content, ranging
from tabular data to images.
ClueWeb09. This dataset of 26k spreadsheets was generated by ex-
tracting .xls file URLs from the ClueWeb09 [15] web crawl dataset.
Enron. This dataset was generated by extracting 18k spreadsheets
from the Enron email dataset [26]. These spreadsheets were used
to exchange data within the Enron corporation.
Academic. This dataset was collected from an academic institu-
tion; this academic institution used these spreadsheets to manage
internal data about course workloads of instructors, salaries of staff,
and student performance.
We list these four datasets along with some statistics in Table 1.
Since the first two datasets are from the open web, they are primar-
ily meant for data publication: as a result, only about 29% and 42%
of these sheets (column 3) contain formulae, with the formulae oc-
cupying less than 3% of the total number of non-empty cells for
both datasets (column 5). The third dataset is from a corporation,
and is primarily meant for data exchange, with a similarly low frac-
tion of 39% of these sheets containing formulae, and 3.35% of the
non-empty cells containing formulae. The fourth dataset is from
an academic institution, and is primarily meant for data analysis,
with a high fraction of 91% of the sheets containing formulae, and
23.26% of the non-empty cells containing formulae.

2.1.2 User Survey
To evaluate the kinds of operations performed on spreadsheets,

we solicited participants for a qualitative user survey: we recruited
thirty participants from the industry who exclusively use spread-
sheets for data management and analysis. This survey was con-
ducted via an online form, with the participants answering a small
number of multiple-choice and free-form questions, followed by
the authors aggregating the responses.

2.2 Structure Evaluation
We now use our spreadsheet datasets to understand how data is

laid out on spreadsheets.
Across Spreadsheets: Data Density. First, we study how similar
real spreadsheets are to relational data conforming to a specific tab-
ular structure. To study this, we estimate the density of each spread-
sheet, defined as the ratio of the filled-in cells to the total number of
cells—specified by the minimum bounding rectangular box enclos-
ing the filled-in cells—within a spreadsheet. We depict the results

2

dataspread.github.io
dataspread.github.io

Dataset Sheets Sheets with formulae Sheets with > 20% formulae % of formulae Sheets with < 50% density Sheets with < 20% density
Internet 52311 29.15% 20.26% 1.30% 22.53% 6.21%

ClueWeb09 26148 42.21% 27.13% 2.89% 46.71% 23.8%
Enron 17765 39.72% 30.42% 3.35% 50.06% 24.76%

Academic 636 91.35% 71.26% 23.26% 90.72% 60.53%

Table 1: Spreadsheet Datasets: Preliminary Statistics

0

5 K

10 K

15 K

20 K

0.2 0.4 0.6 0.8 1

#
Sh

ee
ts

Density
0

2 K

4 K

6 K

0.2 0.4 0.6 0.8 1

#
Sh

ee
ts

Density
0

1 K

2 K

3 K

4 K

0.2 0.4 0.6 0.8 1

#
Sh

ee
ts

Density
0

100

200

300

0.2 0.4 0.6 0.8 1

#
Sh
ee
ts

Density
Figure 1: Data Density — (a) Internet (b) ClueWeb09 (c) Enron (d) Academic

in the last two columns of Table 1, and in Figure 1, which depicts
the distribution of this ratio. We note that spreadsheets within Inter-
net, Clueweb09, and Enron datasets are typically dense, i.e., more
than 50% of the spreadsheets have density greater than 0.5. On the
other hand, for the Academic dataset, we note a high proportion
(greater than 60%) of spreadsheets have density values less than
0.2. This low density is because the latter dataset embeds a num-
ber of formulae and use forms to report data in a user-accessible
interface. Thus, we have:

Takeaway 1: Real spreadsheets vary widely in their density,
ranging from highly sparse to highly dense, necessitating data
models that can adapt to such variations.

Within a Spreadsheet: Tabular regions. For the spreadsheets that
are sparse, we further analyzed them to evaluate whether there are
regions within these spreadsheets with high density—essentially
indicating that these regions can be regarded as tables. To iden-
tify these tabular regions, we first constructed a graph consisting of
filled-in cells within each spreadsheet, where two cells (i.e., nodes)
have an edge between them if they are adjacent either vertically or
horizontally. We then computed the connected components on this
graph. We declare a connected component to be a tabular region if
it spans at least two columns and five rows, and has an overall den-
sity of at least 0.7, defined as before as the ratio of the filled-in cells
to the total number of cells in the minimum bounding rectangle en-
compassing the connected component. In Table 2, for each dataset,
we list the total number of tabular regions identified (column 2),
the number of filled-in cells covered by these regions (column 3),
and the fraction of the total filled-in cells that are captured within
these tabular regions (column 4).

Dataset Tables Table cells %Coverage
Internet Crawl 67,374 124,698,013 66.03
ClueWeb09 37,164 52,257,649 67.68
Enron 9,733 8,135,241 60.98
Academic 286 18,384 12.10

Table 2: Tabular Regions in Spreadsheets.
For the Internet Crawl, ClueWeb09, and Enron datasets, we observe
that greater than 60% of the cells are part of tabular regions. We
also note that for the Academic dataset, where the sheets are rather
sparse, there still are a modest number of regions that are tabular
(286 across 636 sheets).

Takeaway 2: Even within a single spreadsheet, there is often
high skew, with areas of both high density and low density,
indicating the need for fine-grained data models that can treat
these regions differently.

2.3 Operation Evaluation
We now move onto evaluating the operations performed on spread-

sheets, both the formulae embedded with spreadsheets, as well as
other data manipulation, viewing and modification operations.

Popularity: Formulae Usage. We begin by studying how often
formulae are used within spreadsheets. On examining Table 1, we
find that there is a high variance in the fraction of cells that are for-
mulae (column 5), ranging from 1.3% to 23.26%. We note that the
academic institution dataset embeds a high fraction of formulae,
indicating that the spreadsheets in that case are used primarily for
data management and analysis as opposed to data sharing or pub-
lication. Despite that, all of the datasets have a substantial fraction
of spreadsheets where the formulae occupy more than 20% of the
cells (column 4)—20.26% and higher for all datasets.

Takeaway 3: Formulae are very common in spreadsheets, with
over 20% of the spreadsheets containing a large fraction of
over 1

5 of formulae, across all datasets. The high prevalence
of formulae indicates that optimizing for the access patterns
of formulae when developing data models is crucial.

Access: Formulae Distribution and Access Patterns. Next, we
study the distribution of formulae used within spreadsheets—see
Figure 2. Not surprisingly, arithmetic operations are very com-
mon across all datasets. The first three datasets have an abundance
of conditional formulae through IF statements (e.g., second bar in
Figure 2a)—these statements were typically used to fill in missing
data or to change the data type, e.g., IF(H67=true,1.0,0.0). In contrast,
the Academic dataset is dominated by formulae on numeric data.
Overall, there is a wide variety of formulae that span both a small
number of cell accesses (e.g., arithmetic), as well as a large number
of them (e.g., SUM, VL short for VLOOKUP). The last two correspond
to standard database operations such as aggregation and joins.

Dataset Total Cells Cells accessed Components
Accessed per Formula Per Formula

Internet 2,460,371 334.26 2.5
ClueWeb09 2,227,682 147.99 1.92
Enron 446,667 143.05 1.75
Academic 35,335 3.03 1.54

Table 3: Cells accessed by formulae.
To gain a better understanding of how much effort is necessary to

execute these formulae, we measure the number of cells accessed
by each formula. Then, we tabulate the average number of cells
accesses per formula in column 3 of Table 3 for each dataset. As
we can see in the table, the average number of cells accesses per
formula is not small—with up to 300+ cells per formula for the In-
ternet dataset, and about 140+ cells per formula for the Enron and
ClueWeb09 datasets. The Academic dataset has a smaller average
number—many of these formulae correspond to derived columns
that access a small number of cells at a time. Next, we wanted to
check if the accesses made by these formulae were spread across
the spreadsheet, or could exploit spatial locality. To measure this,
we considered the set of cells accessed by each formula, and then
generated the corresponding graph of these accessed cells as de-
scribed in the previous subsection for computing the number of

3

0

0.4 M

0.8 M

1.2 M

1.6 M

2.0 M

2.4 M

ARITH IF LN BLANK SUM VL ...

#
Fo

rm
ul

ae

Formula
0

0.4 M

0.8 M

1.2 M

1.6 M

2.0 M

ARITH IF SUM NUM SEARCH AND

#
Fo
rm
ul
ae

Formula
0

0.1 M

0.2 M

0.3 M

0.4 M

ARITH SUM IF BLANK AND RAND ...

#
Fo

rm
ul

ae

Formula
0

10 k

20 K

30 K

ARITH SUM LOG ROUND LN FLOOR ...

#
Fo

rm
ul

ae

Formula
Figure 2: Formulae Distribution — (a) Internet (b) ClueWeb09 (c) Enron (d) Academic

 0

 10

 20

 30

Scrolling Changing Formula Row/Col Tabular Ordering

Us
ag

e

Spreadsheet Operations

1
2
3
4
5

Figure 3: Operations performed on spreadsheets.

tabular regions. We then counted the number of connected com-
ponents in this graph, and tabulated the results in column 4 in the
same table. As can be seen, even though the number of cells ac-
cessed may be large, these cells stem from a small number of con-
nected components; as a result, we can exploit spatial locality to
execute them more efficiently.

Takeaway 4: Formulae on spreadsheets access cells on the
spreadsheet by position; some common formulae such as SUM
or VLOOKUP access a rectangular range of cells at a time.
The number of cells accessed by these formulae can be quite
large, and most of these cells stem from contiguous areas of
the spreadsheet.

User-Identified Operations. In addition to identifying how users
structure and manage data on a spreadsheet, we now analyze the
common spreadsheet operations that users perform. To this end, we
conducted a small-scale online survey of 30 participants to study
how users operate on spreadsheet data. This qualitative study is
valuable since real spreadsheets do not reveal traces of user oper-
ations performed on them (e.g., revealing how often users perform
ad-hoc operations like scrolling, sorting, deleting rows or columns).
Our questions in this study were targeted at understanding (a) how
users perform operations on the spreadsheet and (b) how users or-
ganize data on the spreadsheet.

With the goal of understanding how users perform operations on
the spreadsheet, we asked each participant to answer a series of
questions where each question corresponded to whether they con-
ducted the specific operation under consideration on a scale of 1–5,
where 1 corresponds to “never” and 5 to “frequently”. For each
operation, we plotted the results in a stacked bar chart in Figure 3,
with the higher numbers stacked on the smaller ones like the legend
indicates.

We find that all the thirty participants perform scrolling, i.e.,
moving up and down the spreadsheet to examine the data, with
22 of them marking 5 (column 1). All participants reported to have
performed editing of individual cells (column 2), and many of them
reported to have performed formula evaluation frequently (column
3). Only four of the participants marked < 4 for some form of
row/column-level operations, i.e., deleting or adding one or more
rows or columns at a time (column 4).

Takeaway 5: There are several common operations performed
by spreadsheet users including scrolling, row and column
modification, and editing individual cells.

Our second goal for performing the study was to understand
how users organize their data on a spreadsheet. We asked each
participant if their data is organized in well-structured tables, or if
the data scattered throughout the spreadsheet, on a scale of 1 (not
organized)–5 (highly organized)—see Figure 3. Only five partici-
pants marked < 4 which indicates that users do organize their data
on a spreadsheet (column 5). We also asked the importance of or-
dering of records in the spreadsheet on a scale of 1 (not important)–
5 (highly important). Unsurprisingly, only five participants marked
< 4 for this question (column 6). We also provided a free-form
textual input where multiple participants mentioned that ordering
comes naturally to them and is often taken for granted while using
spreadsheets.

Takeaway 6: Spreadsheet users typically try to organize their
data as far as possible on the spreadsheet, and rely heavily
on the ordering and presentation of the data on their spread-
sheets.

3. SPREADSHEET DESIDERATA
The goal for DATASPREAD is to combine the ease of use and

interactivity of spreadsheets, while simultaneously providing the
scalability, expressiveness, and collaboration capabilities of databases.
Thus, as we develop DATASPREAD, having two aspects of inter-
est: first, how do we support spreadsheet semantics over a database
backend, and second, how do we support database operations within
a spreadsheet. Our primary focus will be on the former, which
will occupy the bulk of the paper. We return to the latter in Sec-
tion 6. For now, we focus on describing the desiderata for support-
ing spreadsheet semantics over databases. We first describe our
conceptual spreadsheet data model, and then describe the desired
operations that need to be supported on this conceptual data model.
Conceptual Data Model. A spreadsheet consists of a collection
of cells. A cell is referenced by two dimensions: row and column.
Columns are referenced using letters A, . . ., Z, AA, . . .; while rows
are referenced using numbers 1, 2, . . . Each cell contains either a
value, or a formula. A value is a constant belonging to some fixed
type. For example, in Figure 4 a screenshot from our working im-
plementation of DATASPREAD, B2 (column B, row 2) contains the
value 10. In contrast, a formula is a mathematical expression that
contains values and/or cell references as arguments, to be manipu-
lated by operators or functions. The expression corresponding to a
formula eventually unrolls into a value. For example, in Figure 4,
cell F2 contains the formula =AVERAGE(B2:C2)+D2+E2, which unrolls
into the value 85. The value of F2 depends on the value of cells B2,
C2, D2, and E2, which appear in the formula associated with F2.

In addition to a value or a formula, a cell could also additionally
have formatting associated with it; e.g., a cell could have a specific
width, or the text within a cell can have bold font, and so on. For
simplicity, we ignore formatting aspects, but these aspects can be
easily captured within our representation schemes without signifi-
cant changes.
Spreadsheet Operations. We now describe the operations that we
aim to support on DATASPREAD, drawing from the operations we
found in our user survey (takeaway 5). We consider the following
read-only operations:

4

Figure 4: Sample Spreadsheet (DATASPREAD screenshot).

• Scrolling: This operation refers to the act of retrieving cells
within a certain range of rows and columns. For instance,
when a user scrolls to a specific position on the spreadsheet,
we need to retrieve a rectangular range corresponding to the
window that is visible to the user. Accessing an entire row or
column, e.g., A:A, is a special case of rectangular range where
the column/row corresponding to the range is not bounded.

• Formula evaluation: Evaluating formulae can require ac-
cessing multiple individual cells (e.g., A1) within the spread-
sheet or ranges of cells (e.g., A1:D100).

Note that in both cases, the accesses correspond to rectangular re-
gions of the spreadsheet. We consider the following four update
operations:

• Updating an existing cell: This operation corresponds to
accessing a cell with a specific row and column number and
changing its value. Along with cell updates, we are also re-
quired to reevaluate any formulae dependent on the cell.

• Inserting/Deleting row/column(s): This operation corresp-
onds to inserting/deleting row/column(s) at a specific posi-
tion on the spreadsheet, followed by shifting subsequent row/-
column(s) appropriately.

Note that, similar to read-only operations, the update operations
require updating cells corresponding to rectangular regions.

In the next section, we develop data models for representing the
conceptual data model as described in this section, with an eye to-
wards supporting the operations described above.

4. REPRESENTING SPREADSHEETS
We now address the problem of representing a spreadsheet within

a relational database. For the purpose of this section and the next,
we focus on representing one spreadsheet, but our techniques seam-
lessly carry over to the multiple spreadsheet case; like we described
earlier, we focus on the content of the spreadsheet as opposed to the
formatting, as well as other spreadsheet metadata, like spreadsheet
name(s), spreadsheet dimensions, and so on.

We describe the high-level problem of representation of spread-
sheet data here; we will concretize this problem subsequently.

4.1 High-level Problem Description
The conceptual data model corresponds to a collection of cells,

represented as C = {C1, C2, . . . , Cm}; as described in the previ-
ous section, each cell Ci corresponds to a location (i.e., a specific
row and column), and has some contents—either a value or a for-
mula. Our goal is to represent and store the cells C comprising
the conceptual data model, via one of the physical data models,
P. Each T 2 P corresponds to a collection of relational tables
{T1, . . . , Tp}. Each table Ti records the data in a certain portion of
the spreadsheet, as we will see subsequently. Given a collection C,
a physical data model T is said to be recoverable with respect to C

if for each Ci 2 C, 9Tj 2 T such that Tj records the data in Ci,
and 8k 6= j, Tk does not record the data in Ci. Thus, our goal is to
identify physical data models that are recoverable.

At the same time, we want to minimize the amount of storage
required to record T within the database, i.e., we would like to

minimize size(T) =
Pp

i=1 size(Ti). Moreover, we would like
to minimize the time taken for accessing data using T , i.e., the
access cost, which is the cost of accessing a rectangular range of
cells for formulae (takeaway 4) or scrolling to specific locations
(takeaway 5), which are both common operations. And we would
like to minimize the time taken to perform updates, i.e., the update
cost, which is the cost of updating individual cells or a range of
cells, and the insertion and deletion of rows and columns.

Overall, starting from a collection of cells C, our goal is to iden-
tify a physical data model T such that: (a) T is recoverable with
respect to C, and (b) T minimizes a combination of storage, access
and update costs, among all T 2 P.

We begin by considering the setting where the physical data
model T has a single relational table, i.e., T = {T1}. We develop
three ways of representing this table: we call them primitive data
models, and are all drawn from prior work, each of which work
well for a specific structure of spreadsheet—this is the focus of
Section 4.2. Then, we extend this to the setting where |T | > 1 by
defining the notion of a hybrid data model with multiple tables each
of which uses one of the three primitive data models to represent a
certain portion of the spreadsheet—this is the focus of Section 4.3.
Given the high diversity of structure within spreadsheets and high
skew (takeaway 2), having multiple primitive data models, and the
ability to use multiple tables, gives us substantial power in repre-
senting spreadsheet data.

4.2 Primitive Data Models
Our primitive data models represent trivial solutions for spread-

sheet representation with a single table. Before we describe these
data models, we discuss a small wrinkle that affects all of these
models. To capture a cell’s identity, i.e., its row and column num-
ber, we need to implicitly or explicitly record a row and column
number with each cell. Say we use an attribute to capture the row
number for a cell. Then, the insertion or deletion of rows requires
cascading updates to the row number attribute for all subsequent
rows. As it turns out, all of the data models we describe in this
section suffer from performance issues arising from cascading up-
dates, but the solution to deal with these issues is similar for of
these all of them, and will be described in Section 5.

Also, note that the access and update cost of various data mod-
els depends on whether the underlying database is a row store or a
columnar store. For the rest of this section and the paper, we fo-
cus on a row store, such as PostgreSQL, which is what we use in
practice, and is also more tailored for hybrid read-write settings.
We now describe the three primitive data models:
Row-Oriented Model (ROM). The row-oriented data model (ROM)
is straightforward, and is akin to data models used in traditional re-
lational databases. Let rmax and cmax represent the maximum row
number and column number across all of the cells in C. Then, in the
ROM model, we represent each row from row 1 to rmax as a sep-
arate tuple, with an attribute for each column Col1 . . ., Colcmax,
and an additional attribute for explicitly capturing the row iden-
tity, i.e., RowID. The schema for ROM is: ROM(RowID, Col1,
. . ., Colcmax)—we illustrate the ROM representation of Figure 4
in Figure 5: each entry is a pair corresponding to a value and a
formula, if any. For dense spreadsheets that are tabular (takeaways
1 and 2), this data model can be quite efficient in storage and ac-
cess, since it minimizes redundant information: each row number is
recorded only once, independent of the number of columns. Over-
all, the ROM representation shines when entire rows are accessed
at a time, as opposed to entire columns. It is also efficient for ac-
cessing a large range of cells at a time.
Column-Oriented Model (COM). The second representation is
also straightforward, and is simply the transpose of the ROM rep-
resentation. Often, we find that certain spreadsheets have many

5

RowID Col1 ... Col6

1 ID, NULL ... Total, NULL
2 Alice, NULL ... 85, AVERAGE(B2:C2)+D2+E2
...

Figure 5: ROM Data Model for Figure 4.

columns and relatively few rows, necessitating such a representa-
tion. The schema for COM is: COM(ColID, Row1, . . ., Rowrmax).
The COM representation of Figure 4 is provided in Figure 6. Like
ROM, COM shines for dense data; while ROM shines for row-
oriented operations, COM shines for column-oriented operations.

ColID Row1 ... Row5

1 ID,NULL ... Dave,NULL
2 HW1,NULL ... 8,NULL
...

Figure 6: COM Data Model for Figure 4.
Row-Column-Value Model (RCV). The Row-Column-Value Model
(RCV) is inspired by key-value stores, where the Row-Column
number pair is treated as the key, i.e., the row and column identi-
fiers are explicitly captured as two attributes. The schema for RCV
is RCV(RowID, ColID, V alue). The RCV representation for Fig-
ure 4 is provided in Figure 7. For sparse spreadsheets that are often
found in practice (takeaway 1 and 2), this model is quite efficient in
storage and access since it records only the cells that are filled in,
but for dense spreadsheets, it incurs the additional cost of record-
ing and retrieving both the row and column number for each cell
as compared to ROM and COM, and has a much larger number of
tuples. RCV is also efficient when it comes to retrieving specific
cells at a time.

RowID ColID Value
1 1 ID, NULL
..., ...
2 2 10, NULL
..., ...
2 6 85, AVERAGE(B2:C2)+D2+E2
..., ...

Figure 7: RCV Data Model for Figure 4.

4.3 Hybrid Data Model: Intractability
So far, we developed three primitive data models, that represent

reasonable extremes if we are to represent and store a spreadsheet
within a single table in a database system. If, however, we do not
limit data models to have a single table, we may be able to develop
even better solutions by combining the benefits of the three prim-
itive data models, and decomposing the spreadsheet into multiple
tables each of which is represented by one of the primitive data
models. We call these data models as hybrid data models.

DEFINITION 1 (HYBRID DATA MODELS). Given a collection
of cells C, we define hybrid data models to the space of physical
data models that are formed using a collection of tables T such that
the T is recoverable with respect to C, and further, each Ti 2 T is
either a ROM, COM, or an RCV table.
As an example, for the spreadsheet in Figure 8, we might want
the dense areas, i.e., B1:D4 and D5:G7, represented via a ROM or
COM table each and the remaining area, specifically, H1 and I2 to
be represented by an RCV table.
Cost Model. Next, the question is how do we model the cost for
a specific hybrid data model. As discussed earlier, the storage, the
access cost, and the update cost all impact our choice of hybrid data
model. For the purpose of this section, we will focus on exclusively
on the storage. We will generalize to the access cost in Appendix B.
The update cost will be the focus of the next section. Furthermore,
our focus will now be on ROM tables; we will generalize to RCV
and COM tables in Section 4.6.

Given a hybrid data model T = {T1, . . . , Tp}, where each ROM
table Ti has ri rows and ci columns, the cost of T is defined as

A B C D E F G H I
1 ✕ ✕ ✕ ✕

2 ✕ ✕ ✕

3 ✕ ✕ ✕

4 ✕ ✕ ✕

5 ✕ ✕ ✕

6 ✕ ✕ ✕ ✕

7 ✕ ✕ ✕

23

1

45
Figure 8: Hybrid Data Model and its Recursive Decomposition

cost(T) =

pX

i=1

s1 + s2 · (ri ⇥ ci) + s3 · ci + s4 · ri. (1)

Here, the constant s1 is the cost of initializing a new table, as well
as storing table-related metadata, while the constant s2 is the cost of
storing each individual cell (empty or not) in the ROM table. Note
that the non-empty cells that have content may require even more
space than s2; however this is a constant cost that does not depend
on the specific hybrid data model instance, and hence is excluded
from the cost above. The constant s3 is the cost corresponding
to each column, while s4 is the cost corresponding to each row.
The former is necessary to record schema information per column,
while the latter is necessary to record the row information in the
RowID attribute. Overall, while the specific costs si may differ
quite a bit across different database systems, what is clear is that all
of these different costs matter.
Formal Problem. We are now ready to state our formal problem
below.

PROBLEM 1 (HYBRID-ROM). Given a spreadsheet with a
collection of cells C, identify the hybrid data model T with only
ROM tables that minimizes cost(T).
Unfortunately, Problem 1 is NP-HARD, via a reduction from the
minimum edge length partitioning problem [27] of rectilinear poly-
gons—the problem of finding a partitioning of a polygon whose
edges are aligned to the X and Y axes, into rectangles, while min-
imizing the total sum of the perimeter of the resulting rectangles.

THEOREM 1 (INTRACTABILITY). Problem 1 is NP-HARD.
We formally show the hardness of the problem in Appendix A.

4.4 Optimal Recursive Decomposition
Instead of directly solving Problem 1, which is intractable, we

instead aim to make it tractable, by reducing the search space of
solutions. In particular, we focus on hybrid data models that can
be obtained by recursive decomposition. Recursive decomposition
is a process where we repeatedly subdivide the spreadsheet area
from [1 . . . rmax, 1 . . . cmax] by using a vertical cut between two
columns or a horizontal cut between two rows, and then recurse
on the two areas that are formed. As an example, in Figure 8, we
can make a cut along line 1 horizontally, giving us two regions
from rows 1 to 4 and rows 5 to 6. We can then cut the top portion
along line 2 vertically, followed by line 3, separating out one table
B1:D4. By cutting the bottom portion along line 4 and line 5, we
can separate out the table D5:G7. Further cuts can help us carve out
tables out of H1 or I2, not depicted here.

As the example illustrates, recursive decomposition is very pow-
erful, since it captures a broad space of hybrid models; basically
anything that can be obtained via recursive cuts along the x and y
axis. Now, a natural question is: what sorts of hybrid data models
cannot be composed via recursive decomposition? We present an
example in Figure 9(a).

OBSERVATION 1 (COUNTEREXAMPLE). In Figure 9(a), the
tables: A1:B4, D1:I2, A6:F7, H4:I7 can never be obtained via recursive
decomposition.

6

A B C D E F G H I
1 ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

2 ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

3 ✕ ✕

4 ✕ ✕ ✕ ✕

5 ✕ ✕

6 ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

7 ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

A C D G H
1 ✕ ✕ ✕ ✕

3 ✕

4 ✕ ✕

5 ✕

6 ✕ ✕ ✕ ✕2	

2	
1	
1	
1	

2			1			3			1		2	

Figure 9: (a) Counterexample (b) Weighted Representation

To see this, note that any vertical or horizontal cut that one would
make at the start would cut through one of the four tables, mak-
ing the decomposition impossible. Nevertheless, the hybrid data
models obtained via recursive decomposition form a natural class
of data models.

As it turns out, identifying the solution to Problem 1 is PTIME
for the space of hybrid data models obtained via recursive decom-
position. The algorithm involves dynamic programming. Infor-
mally, our algorithm makes the most optimal “cut” horizontally or
vertically at every step, and proceeds recursively. We now describe
the dynamic programming equations.

Consider a rectangular area formed from x1 to x2 as the top and
bottom row numbers respectively, both inclusive, and from y1 to y2

as the left and right column numbers respectively, both inclusive,
for some x1, x2, y1, y2. We represent the optimal cost by the func-
tion Opt(). Now, the optimal cost of representing this rectangular
area, i.e., Opt((x1, y1), (x2, y2)), is the minimum of the following
possibilities:

• If there is no filled cell in the rectangular area (x1, y1), (x2, y2),
then we do not use any data model. Hence, we have

Opt((x1, y1), (x2, y2)) = 0 (2)

• Do not split, i.e., store as a ROM model (romCost()):

romCost((x1, y1), (x2, y2)) = s1 + s2 · (r12 ⇥ c12)

+ s3 · c12 + s4 · r12, (3)

where number of rows r12 = (x2 �x1 +1), and the number
of columns c12 = (y2 � y1 + 1).

• Perform a horizontal cut (CH):

CH = min
i2{x1,...,x2}

Opt((x1, y1), (i, y2))

+ Opt((i+ 1, y1), (x2, y2)). (4)

• Perform a vertical cut (CV):

CV = min
j2{y1,...,y2}

Opt((x1, y1), (x2, j))

+ Opt((x1, j + 1), (x2, y2)). (5)

Therefore, when there are filled cells in the rectangle,

Opt((x1, y1), (x2, y2)) =

min
�
romCost((x1, y1) , (x2, y2)), CH , CV

�
. (6)

else Opt((x1, y1), (x2, y2)) = 0.
The base case is when the rectangular area is of dimension 1⇥1.

Here, we store the area as a ROM table if it is a filled cell. Hence,
we have, Opt((x1, y1), (x1, y1)) = c1 + c2 + c3 + c4, if filled,
and 0 if not.

We have the following theorem:
THEOREM 2 (DYNAMIC PROGRAMMING OPTIMALITY). The

optimal ROM-based hybrid data model based on recursive decom-
position can be determined via dynamic programming.

Time Complexity. Our dynamic programming algorithm runs in
polynomial time with respect to the size of the spreadsheet. Let
the length of the larger side of the minimum enclosing rectangle
of the spreadsheet is of size n. Then, the number of candidate
rectangles is O(n4). For each rectangle, we have O(n) ways to
perform the cut. Therefore, the running time of our algorithm is
O(n5). However, this number could be very large if the spread-
sheet is massive—which typical of the use-cases we aim to tackle.
Weighted Representation. We now describe a simple optimiza-
tion that helps us reduce the time complexity substantially, while
preserving optimality for the cost model that we have been using
so far. Notice that in many real spreadsheets, there are many rows
and columns that are very similar to each other in structure, i.e.,
they have the same set of filled cells. We exploit this property to
reduce the effective size n of the spreadsheet. Essentially, we col-
lapse rows that have identical structure down to a single weighted
row, and similarly collapse columns that have identical structure
down to a single weighted column.

Consider Figure 9(b) which shows the weighted version of Fig-
ure 9(a). Here, we can collapse column B down into column A,
which is now associated with weight 2; similarly, we can collapse
row 2 into row 1, which is now associated with weight 2. In this
manner, the effective area of the spreadsheet now becomes 5⇥5 as
opposed to 7⇥9.

Now, we can apply the same dynamic programming algorithm
to the weighted representation of the spreadsheet: in essence, we
are avoiding making cuts “in-between” the weighted edges, thereby
reducing the search space of hybrid data models. As it turns out,
this does not sacrifice optimality, as the following theorem shows:

THEOREM 3 (WEIGHTED OPTIMALITY). The optimal hybrid
data model obtained by recursive decomposition on the weighted
spreadsheet is no worse than the optimal hybrid data model ob-
tained by recursive decomposition on the original spreadsheet.

4.5 Greedy Decomposition Algorithms
Greedy Decomposition. To improve the running time even fur-
ther, we propose a greedy heuristic that avoids the high complexity
of the dynamic programming algorithm, but sacrifices somewhat on
optimality. The greedy algorithm essentially repeatedly splits the
spreadsheet area in a top-down manner, making a greedy locally
optimal decision, instead of systematically considering all alterna-
tives, like in the dynamic programming algorithm. Thus, at each
step, when operating on a rectangular spreadsheet area (x1, y1), (x2, y2),
it identifies the operation that results in the lowest local cost. We
have three alternatives: Either we do not split, in which case the
cost is from Equation 3, i.e., romCost((x1, y1), (x2, y2)). Or we
split horizontally (vertically), in which case the cost is the same as
CH (CV) from Equation 4 (Equation 5), but with Opt() replaced
with romCost(), since we are making a locally optimal decision.
The smallest cost decision is followed, and then we continue recur-
sively decomposing using the same rule on the new areas, if any.
Complexity. This algorithm has a complexity of O(n2), since each
step takes O(n) and there are O(n) steps. While the greedy algo-
rithm is sub-optimal, the local decision that it makes is optimal in
the worst case, i.e., with no further information about the structure
of the areas that arise as a result of the decomposition, this is the
best decision to make at each step.
Aggressive Greedy Decomposition. The greedy algorithm de-
scribed above stops exploration as soon as it is unable to find a
cut that reduces the cost locally, based on a worst case assumption.
This may cause the algorithm to halt prematurely, even though ex-
ploring further decompositions may have helped reduce the cost.
An alternative to the greedy algorithm described above is one where
we don’t stop subdividing, i.e., we always choose to use the best

7

horizontal or vertical cut, and then subdivide the area based on that
cut in a depth-first manner. We keep doing this until we end up with
rectangular areas where all of the cells are filled in with values. (At
this point, it provably doesn’t benefit us to subdivide further.) After
this point, we backtrack up the tree of decompositions, bottom-up,
assembling the best solution that was discovered, similar to the dy-
namic programming approach, considering whether to not split, or
perform a horizontal or vertical split.
Complexity. Like the greedy approach, the aggressive greedy ap-
proach has complexity O(n2), but takes longer since it considers a
larger space of data models than the greedy approach.

4.6 Extensions
In this section, we describe extensions to the cost model and

algorithms to handle COM and RCV tables in addition to ROM.
Other extensions can be found in Appendix B, including incorpo-
rating access cost along with storage, including the costs of indexes,
and dealing with situations when database systems impose limita-
tions on the number of columns in a relation. We will describe these
extensions to the cost model, and then describe the changes to the
basic dynamic programming algorithm; modifications to the greedy
and aggressive greedy decomposition algorithms are straightfor-
ward.
RCV and COM. The cost model can be extended in a straightfor-
ward manner to allow each rectangular area to be a ROM, COM,
or an RCV table. First, note that it doesn’t benefit us to have mul-
tiple RCV tables—we can simply combine all of these tables into
one, and assume that we’re paying a fixed up-front cost to have one
RCV table. Then, the cost for a table Ti, if it is stored as a COM
table is:

comCost(Ti) = s1 + s2 · (ri ⇥ ci) + s4 · ci + s3 · ri.
This equation is the same as Equation 1, but with the last two con-
stants transposed. And the cost for a table Ti, if it is stored as an
RCV table is simply:

rcvCost(Ti) = s5 ⇥#cells.

where s5 is the cost incurred per tuple. Once we have this cost
model set up, it is straightforward to apply dynamic programming
once again to identify the optimal hybrid data model encompassing
ROM, COM, and RCV. The only step that changes in the dynamic
programming equations is Equation 3, where we have to consider
the COM and RCV alternatives in addition to ROM. We have the
following theorem.

THEOREM 4 (OPTIMALITY WITH ROM, COM, AND RCV).
The optimal ROM, COM, and RCV-based hybrid data model based
on recursive decomposition can be determined via dynamic pro-
gramming.

5. POSITIONAL MAPPING
As discussed in Section 4, for all of the data models, storing the

row and/or column numbers may result in substantial overheads
during insert and delete operations due to cascading updates to all
subsequent rows or columns—this could make working with large
spreadsheets infeasible. In this section, we develop solutions for
this problem by introducing the notion of positional mapping to
eliminate the overhead of cascading updates. For our discussion
we focus on row numbers; the techniques can be analogously ap-
plied to columns. To keep our discussion general, we use the term
position to represent the ordinal number, i.e., either row or column
number, that captures the location of the cell along a specific di-
mension. In addition, row and column numbers can be dealt with
independently.
Problem. We require a data structure to efficiently support posi-
tional operations without the overhead of cascading updates. In

100
200
250
300

abc
aui
ois
kov

Key Data

350 pos
333 rte

400
500

iks
bhg

600 kis... ...

1

2

3

4

5

6

7

8

9

3 4

5 1 3 84 6 7

1 2 3 1

Leaf Nodes
(values)

Non-Leaf Nodes
(counts &
children pointers)

Figure 10: (a) Monotonic Positional Mapping (b) Index for Hierar-
chical Positional Mapping

particular, we want a data structure on items (here tuples) that can
capture a specific ordering among the items and efficiently support
the following operations: (a) fetch items based on a position, (b) in-
sert items at a position, and (c) delete items from a position. The
insert and delete operations require updating the positions of the
subsequent items, e.g., inserting an item at the nth position requires
us to first increment by one the positions of all the items that have
a position greater than or equal to n, and then add the new item
at the n

th position. Due to the interactive nature of DATASPREAD,
our goal is to perform these operations within a few hundred mil-
liseconds.
Row Number as-is. We motivate the problem by demonstrating
the impact of cascading updates in terms of time complexity. Stor-
ing the row numbers as-is with every tuple makes the fetch opera-
tion efficient at the expense of making the insert and delete opera-
tions inefficient. With a traditional index, e.g., a B-Tree index, the
complexity to access an arbitrary row identified by a row number is
O(logN). On the other hand, insert and delete operations require
updating the row numbers of the subsequent tuples. These updates
also need to be propagated in the index, and therefore it results in a
worst case complexity of O(N logN). To illustrate the impact of
these complexities on practice, in Table 4(a), we display the perfor-
mance of storing the row numbers as-is for two operations—fetch
and insert—on a spreadsheet containing 106 cells. We note that
irrespective of the data model used, the performance of inserts is
beyond our acceptable threshold whereas that of the fetch opera-
tion is acceptable.

Row Number as-is
Operation RCV ROM
Insert 87,821 1,531
Fetch 312 244

Positional Mapping
Operation RCV ROM
Insert 9.6 1.2
Fetch 30,621 273

Table 4: The performance of (in ms) (a) storing Row Number as-is
(b) Monotonic Positional Mapping.

Intuition. To improve the performance of inserts and deletes for
ordered items, we introduce the idea of positional mapping. At its
core, the idea is remarkably simple: we do not store positions but
instead store what we call positional mapping keys. These posi-
tional mapping keys p are proxies that have a one-to-one mapping
with the positions r, i.e., p � r. Formally, positional mappingM
is a bijective function that maintains the relationship between the
row numbers and positional mapping keys, i.e.,M(r) ! p.
Monotonic Positional Mapping. One approach towards positional
mapping is to have positional mapping keys monotonically increase
with position, i.e., for two arbitrary positions ri and rj , if ri > rj

then M(rj) > M(ri). For example, consider the ordered list of
items shown in Figure 10(a). Here, even though the positional map-
ping keys do not correspond to the row number, and even though
there can be arbitrary differences between consecutive positional
mapping keys, we can fetch the n

th record by scanning the posi-
tional mapping keys in an increasing order while maintaining a run-
ning counter to skip n-1 records. The gaps between the consecutive

8

positional mapping keys reduce or even eliminate the renumbering
during insert and delete operations.

Thus, monotonic positional mapping trades-off the performance
of the fetch operation for making insert and delete operations effi-
cient. To fetch the nth item, in the absence of the stored position we
need to scan n items, i.e., the average time complexity is O(N),
where N is the total number of items. If we know the positional
mapping key of the item we are fetching (which is often not the
case), and we have a traditional B+tree index on this key, then the
complexity of this operation is O(logN). Similarly, the complex-
ity of inserting an item if we know the positional mapping key,
determined based on the positional mapping keys of neighboring
items, is O(logN), which is the effort spent to update the under-
lying indexing structure. In Table 4(b), we experimentally observe
that benefits from monotonic positional mapping for the insert op-
erations come at the expense of the fetch operation, leading to un-
acceptable latencies.
Hierarchical Positional Mapping. We now describe a scheme, ti-
tled hierarchical positional mapping, that enhances monotonic po-
sitional mapping, by adding a new indexing structure that allevi-
ates the cost of insert and delete operations, while not sacrificing
the performance of the fetch operation. This new indexing struc-
ture adapts classical work on order-statistic trees [19]. Just like a
typical B+Tree is used to capture the mapping from keys to the cor-
responding records, we can use the same structure to map positions
to positional mapping keys. Here, instead of storing a key we store
the count of elements stored within the entire sub-tree. The leaf
nodes store the values, while the remaining nodes store pointers to
the children along with counts.

For the positional mapping shown in Figure 10(a), we show the
corresponding hierarchical positional mapping index structure in
Figure 10(b). Similar to a B+tree of order m, our structure satis-
fies the following invariants. (a) Every node has at most m chil-
dren. (b) Every non-leaf node (except root) as at-least

⌃
m
2

⌥
chil-

dren. (c) All leaf nodes appear at the same level. Again similar to
B+tree, we ensure the invariants by either splitting a node into two
when the number of children overflow or merging two nodes into
one when the number of children underflow. This ensures that the
height of the tree is at most logdm/2e N .
Hierarchical Positional Mapping: Fetch. Our hierarchical index-
ing structure makes accessing the item at the n

th position efficient,
using the following steps: (i) We start from the root node. (ii) At a
node, we identify the child node to traverse next, by subtracting the
count associated with the children iteratively from n, left to right,
as long as the remainder is positive. This step adjusts the value
of n; we then move one level down in the tree to that child node.
(iii) We repeat the previous step until we reach a leaf node, after
which we extract the n

th element from this node. Now, we have
the key with which to probe a traditional B+tree index on the posi-
tional mapping keys, as in monotonic positional mapping. Overall,
the complexity of this operation is O(logN).
Hierarchical Positional Mapping: Insert/Delete. Insert and delete
operations require updating the counts associated with all of the
nodes that fall on the path between the root and the leaf node cor-
responding to the position that is being updated. As before, we
first identify the leaf node as discussed for a fetch operation, fol-
lowed by updating the item at the leaf node, and traversing back up
the tree to the root. Simultaneously, we use the traditional B+tree
index on the positional mapping keys to update the corresponding
positional mapping key. Once again, the complexity of this opera-
tion is O(logN).

In Table 5, we contrast the complexity of the hierarchical posi-
tional mapping scheme against other positional mapping schemes,
and demonstrate that it dominates the other schemes. We empiri-

View Controller

LRU Cell Cache

Hybrid Translator

ROM
Translator

COM
Translator

RCV
Translator

Evaluator ParserDependency

Positional Mapper

Web Browser

Database

Spreadsheet Data
ROM COM RCV

Pos. Index

Metadata

User
Interface

Execution
Engine

Storage

Hybrid
Optimizer

Ajax
Requests

Ajax
Responses

Figure 11: DATASPREAD Architecture
cally evaluate our positional mapping schemes in Section 7.

Operation on n

th record.
Positional Mapping Method Fetch Insert/Delete
Row Number as-is O(logN) O(N)

Monotonic Positional Mapping O(N) O(logN)

Hierarchical Positional Mapping O(logN) O(logN)

Table 5: Complexity of different positional mapping methods.

6. DATASPREAD ARCHITECTURE
We have implemented DATASPREAD as a web-based tool on

top of a PostgreSQL relational database implementing the Model-
View-Controller approach. The system currently supports basic
spreadsheet operations, e.g., scrolling to arbitrary positions, inser-
tion of rows or columns, and formulae insert and evaluation, on
large spreadsheets that are persisted in the PostgreSQL database.

Figure 11 illustrates DATASPREAD’s architecture, which at a
high level can be divided into three main layers, i.e., (a) user inter-
face, (b) execution engine, and (c) storage. The user interface layer
consists of a spreadsheet widget, which presents a spreadsheet on a
web-based interface to users and records the interactions on it. The
execution engine layer is a web application developed in Java that
resides on an application server. The controller accepts user inter-
actions in form of events and identifies the corresponding actions,
e.g., a formula update is sent to the formula parser, an update to a
cell is sent to the cell cache. The dependency graph captures the
formula dependencies between the cells and aids in triggering the
computation of dependent cells. The positional mapper translates
the row and column numbers into the corresponding stored identi-
fiers and vice versa. The ROM, COM, RCV, and hybrid translators
use their corresponding spreadsheet representations and provide a
“collection of cells” abstraction to the upper layers. This collection
of cells are then cached in memory via an LRU cell cache. The stor-
age layer consists of a relational database, which is responsible for
persisting data. This data is persisted using a combination of ROM,
COM and RCV data models (as described in Section 4) along with
positional indexes, which map row and column numbers to corre-
sponding stored identifiers (as described in Section 5), and meta-
data, which records information about the hybrid data model, and
which tables are responsible for handling which rectangular areas
on the spreadsheet. The hybrid optimizer determines the optimal
hybrid data model and is responsible for migrating data across dif-
ferent tables and primitive data models.

9

Relational Operations in Spreadsheet. Since DATASPREAD is
built on top of a traditional relational database, it can leverage the
SQL engine of the database and seamlessly support SQL queries on
the front-end spreadsheet interface. We describe how we support
standard relational operations in more detail in Appendix C.

7. EXPERIMENTAL EVALUATION
In this section, we present an evaluation of DATASPREAD. Our

high-level goals are to evaluate the feasibility of DATASPREAD to
work with large spreadsheets with billions of cells; in addition, we
attempt to understand the impact of the hybrid data models, and
the impact of the positional mapping schemes. Recent work has
identified 500ms as a yardstick of interactivity [29], and we aim to
verify if DATASPREAD can actually meet that yardstick.

7.1 Experimental Setup
Environment. Our data models and positional mapping techniques
were implemented on top of a PostgreSQL (version: 9.6) database.
The database was configured with default parameters. We run all of
our experiments on a workstation with the following configuration:
Processor: Intel Core i7-4790K 4.0 GHz, RAM: 16 GB, Op-
erating System: Windows 10. Our test scripts are single-threaded
applications developed in Java. While we have also developed
a full-fledged web-based front-end application (see Figure 4), our
test scripts are independent of this front-end, so that we can iso-
late the back-end performance implications. We ensured fairness
by clearing the appropriate cache(s) before every run.
Datasets. We evaluate our algorithms on a variety of real and syn-
thetic datasets. Our real datasets are the ones listed in Table 1:
Internet, ClueWeb09, Enron, and Academic. The first three have
over 10,000 sheets each while the last one has about 700 sheets.
To test scalability, our real-world datasets are insufficient, because
they are limited in scale by what current spreadsheet tools can sup-
port. Therefore, we constructed additional large synthetic spread-
sheet datasets. The spreadsheets in the datasets each have between
10–100 columns, with the number of rows varying from 103 to 107,
and a density between 0–1; this last quantity indicates the proba-
bility that a given cell within the spreadsheet area is filled-in. Our
largest synthetic dataset has a billion non-empty cells, enabling us
to explicitly verify the premise of the title of this work.
We identify several goals for our experimental evaluation:
Goal 1: Impact of Hybrid Data Models on Real Datasets. We
evaluate the hybrid data models selected by our algorithms against
the primitive data models, when the cost model is optimized for
storage. The algorithms evaluated include: ROM, COM, RCV (the
primitive data models, using a single table to represent a sheet),
DP (the dynamic programming algorithm from Section 4.4), and
Greedy and Agg (the greedy and aggressive-greedy algorithms from
Section 4.5). We evaluate these data models on both storage, as
well as formulae access cost, based on the formulae embedded
within the spreadsheets. In addition, we evaluate the running time
of the hybrid optimization algorithms for DP, Greedy, and Agg.
Goal 2: Scalability on Synthetic Datasets. Since our real datasets
aren’t very large, we turn to synthetic datasets for testing out the
scalability of DATASPREAD. We focus on the primitive data mod-
els, i.e., ROM and RCV, coupled with positional mapping schemes,
and evaluate the performance of select, update, and insert/delete
on these data models on varying the number of rows, number of
columns, and the density of the dataset.
Goal 3: Impact of Positional Mapping Schemes. We evaluate
the impact of our positional mapping schemes in aiding positional
access on the spreadsheet. We focus on Row-number-as-is, Mono-
tonic, and Hierarchical positional mapping schemes applied on the

 10

 100

 1000

 10000

Internet ClueWeb09 Enron Academic

Av
g

tim
e

(m
s)

DP
Greedy

Agg

Figure 13: Hybrid optimization algorithms: Running time.

ROM primitive model, and evaluate the performance of fetch, in-
sert, and delete operations on varying the number of rows.

7.2 Impact of Hybrid Data Models
Takeaways: Hybrid data models provide substantial benefits
over primitive data models, with up to 20% reductions in stor-

age, and up to 50% reduction in formula access or evalua-

tion time on PostgreSQL on real spreadsheet datasets, com-
pared to the best primitive data model. While DP has better
performance on storage than Greedy and Agg, it suffers from
high running time; Agg is able to bridge the gap between

Greedy and DP, while taking only marginally more running
time than Greedy. Lastly, if we were to design a database stor-
age engine from scratch, the hybrid data models would provide
up to 50% reductions in storage compared to the best primi-
tive data model.

The goal of this section is to evaluate our data models—both our
primitive and hybrid data models—on real datasets. For each sheet
within each dataset, we run the dynamic programming algorithm
(denoted DP), the greedy algorithm (denoted Greedy), and the ag-
gressive greedy algorithm (denoted Agg) that help us identify ef-
fective hybrid data models. We compare the resulting data models
against the primitive data models: ROM, COM and RCV, where
the entire spreadsheet is stored in a single table.
Storage Evaluation on PostgreSQL. We begin with an evaluation
of storage for different data models on PostgreSQL. The costs for
storage on PostgreSQL as measured by us is as follows: s1 is 8
KB, s2 is 1 bit, s3 is 40 bytes, s4 is 50 bytes, and s5 is 52 bytes.
We plot the results in Figure 12(a): here, we depict the average
normalized storage across sheets: for the Internet, ClueWeb09, and
Enron datasets, we found RCV to have the worst performance, and
hence normalized it to a cost of 100, and scaled the others accord-
ingly; for the Academic datasets, we found COM to have the worst
performance, and hence normalized it to a cost of 100, and scaled
the others accordingly. For the first three datasets, recall that these
datasets are primarily used for data sharing, and as a result are quite
dense. As a result, the ROM and COM data models do well, using
about 40% of the storage of RCV. At the same time, DP, Greedy
and Agg perform roughly similarly, and better than the primitive
data models, providing an additional reduction of 15-20%. On the
other hand, the last dataset, which is primarily used for computa-
tion as opposed to sharing, and is very sparse, RCV does better
than ROM and COM, while DP, Greedy, and Agg once again pro-
vide additional benefits.
Storage Evaluation on an Ideal Database. Note that the reason
why RCV does so poorly for the first three datasets is because Post-
greSQL imposes a high overhead per tuple, of 50 bytes, consider-
ably larger than the amount of storage required to store each cell.
So, to explore this further, we investigated the scenario if we had
the ability to redesign our database storage engine from scratch. We
consider a theoretical “ideal” cost model, where additional over-
heads are minimized. For this cost model, the cost of a ROM or
COM table is equal to the number of cells, plus the length and

10

 0

 20

 40

 60

 80

 100

Internet ClueWeb09 Enron Academic

No
rm

al
ize

d
St

or
ag

e ROM
COM
RCV
DP

Greedy
Agg

 1

 10

 100

Internet ClueWeb09 Enron Academic

No
rm

al
ize

d
St

or
ag

e

Figure 12: (a) Storage Comparison for PostgreSQL (b) Storage Comparison on an Ideal Database

 0.1

 1

 10

Internet ClueWeb09 Enron Academic

Fo
rm

ul
ae

 A
cc

es
s

Ti
m

e
(m

s) ROM
RCV
Agg

Figure 14: Average access time for formulae
breadth of the table (to store the data, the schema, as well as posi-
tional identifiers), while the cost of an RCV row is simply 3 units
(to store the data, as well as the row and column number). We plot
the results in Figure 12(b) in log scale for each of the datasets—we
exclude COM for this chart since it has the same performance as
ROM. Here, we find that ROM has the worst cost across most of
the datasets since it no longer leverages benefits from minimizing
the number of tuples. (For Internet, ROM and RCV are similar, but
RCV is slightly worse.) As before, we normalize the cost of the
ROM model to 100 for each sheet, and scaled the others accord-
ingly, followed by taking an average across all sheets per dataset.
As an example, we find that for the ClueWeb09 corpus, RCV, DP,
Greedy and Agg have normalized costs of about 36, 14, 18, and
14 respectively—with the hybrid data models more than halving
the cost of RCV, and getting 1

7

th the cost of ROM. Furthermore,
in this ideal cost model, DP provides additional benefits relative
to Greedy, and Agg ends up bringing us close to or equal to DP
performance.
Running Time of Hybrid Optimization Algorithm. Our next
question is how long our hybrid data model optimization algo-
rithms for DP, Greedy, and Agg, take on real datasets. In Figure 13,
we depict the average running time of these algorithms on the four
real datasets. The results for all datasets are similar—as an ex-
ample, for Enron, DP took 6.3s on average, Greedy took 45ms (a
140⇥ reduction), while Agg took 345ms (a 20⇥ reduction). Thus
DP has the highest running time for all datasets, since it explores
the entire space of models that can be obtained by recursive par-
titioning. Between Greedy and Agg, Greedy turns out to take less
time. Note that these observations are consistent with our complex-
ity analyses from Section 4.5. That said, Agg allows us to trade off
a little bit more running time for improved performance on storage
(as we saw earlier). We note that for the cases where the spread-
sheets were large, we terminated DP after about 10 minutes, since
we want our optimization to be relatively fast. (Note that using a
similar criterion for termination, Agg and Greedy did not have to
be terminated for any of the real datasets.) To be fair across all the
algorithms, we excluded all of these spreadsheets from this chart—
if we had included them, the difference between DP and the other
algorithms would be even more stark.
Formulae Access Evaluation on PostgreSQL. Next, we wanted
to evaluate if our hybrid data models, optimized only on storage,
have any impact on the access cost for formulae within the real
datasets. Our hope is that the formulae embedded within spread-
sheets end up focusing on “tightly coupled” tabular areas, which
our hybrid data models are able to capture and store in separate

tables. For this evaluation, we focused on Agg, since it provided
the best trade-off between running time and storage costs. Given
a sheet in a dataset, for each data model, we measured the time
taken to evaluate the formulae in that sheet, and averaged this time
across all sheets and all formulae. We plot the results for different
datasets in Figure 14 in log scale in ms. As a concrete example, on
the Internet dataset, ROM has a formula access time of 0.23, RCV
has 3.17, while Agg has 0.13. Thus, Agg provides a substantial re-
duction of 96% over RCV and 45% over ROM—even though Agg
was optimized for storage and not for formula access. This vali-
dates our design of hybrid data models to store spreadsheet data.
Note that while the performance numbers for the real spreadsheet
datasets are small for all data models (due to the size limitations
in present spreadsheet tools) when scaling up to large datasets, and
formulae that operate on these large datasets, these numbers will
increase in a proportional manner, at which point it is even more
important to opt for hybrid data models.

7.3 Scalability of Data Models
Takeaway: Our primitive data models, augmented with posi-
tional mapping provide interactive (<500ms) response time

on spreadsheet datasets ranging up to 1 billion cells for se-
lect, insert, and update operations.

Since our real datasets did not have any spreadsheets that are ex-
tremely large, we now evaluate the scalability of the DATASPREAD
data models in supporting very large synthetic spreadsheets. We fo-
cus on the two primitive data models i.e., ROM and RCV, with the
spreadsheet being represented as a single table in these data mod-
els. Since we use synthetic datasets where cells are “filled in” with
a certain probability, we did not involve hybrid data models, since
they would (in this artificial context) typically end up preferring the
ROM data model. These primitive data models are augmented with
hierarchical positional mapping. We consider the performance on
varying several parameters of these datasets: the density (i.e., the
number of cells that are filled in), the number of rows, and the num-
ber of columns. The default values of these parameters are 1, 107
and 100 respectively. We repeat each operation 500 times and re-
port the averages.

In Figure 15, we depict the charts corresponding to average time
to perform a random select operation on a region of 1000 rows and
20 columns. This is, for example, the operation that would corre-
spond to a user scrolling to a certain position on our spreadsheet.
As can be seen in Figure 15(a), ROM starts dominating RCV be-
yond a certain density, at which point it makes more sense to store
the data in as tuples that span rows instead of incurring the penalty
of creating a tuple for every cell. Nevertheless, the best of these
two models takes less than 150ms across sheets of varying densi-
ties. In Figure 15(b)(c), since the spreadsheet is very dense (density
= 1), ROM takes less time than RCV. Overall, in all cases, even on
spreadsheets with 100 columns and 107 rows and a density of 1,
the average time to select a region is well within 500ms.

We report briefly on the update and insert performance—detailed
results and charts can be found in the Appendix. Overall, for both
RCV and ROM, for inserting a row, the time is well below 500ms

11

 0

 50

 100

 150

 200

 250

 300

0.2 0.4 0.6 0.8 1.0

Ti
m

e
(m

s)

Sheet Density

 RCV
 ROM

50

100

150

200

250

300

10 30 50 70 90 100

Ti
m

e
(m

s)

#Columns

 RCV
 ROM

50

100

150

200

250

300

104 105 106 107

Ti
m

e
(m

s)

#Rows

 RCV
 ROM

Figure 15: Select performance vs — (a) Sheet Density (b) Column Count (c) Row Count

for all of the charts; for updates of a large region, while ROM is
still highly interactive, RCV ends up taking longer since 1000s of
queries need to be issued to the database. In practice, users won’t
update such a large region at a time, and we can batch these queries.
We discuss this further in the appendix.

7.4 Evaluation of Positional Mapping
Takeaway: Hierarchical positional mapping retains the rapid
fetch benefits of row-number-as-is, while also providing the
rapid insert and update benefits of monotonic positional map-
ping. Overall, hierarchical positional mapping is able to per-

form positional operations within a few milliseconds, while
the other positional mapping schemes scale poorly, taking sec-
onds on large datasets for certain operations.
We report detailed results and charts for this evaluation in Ap-

pendix D.

8. RELATED WORK
Our work draws on related work from multiple areas; we re-

view papers in each of the areas, and describe how they relate to
DATASPREAD. We discuss 1) efforts that enhance the usability of
databases, 2) those that attempt to merge the functionality of the
spreadsheet and database paradigms, but without a holistic inte-
gration, and 3) using array-based database management systems.
We described our vision for DATASPREAD in an earlier demo pa-
per [10].
1. Making databases more usable. There has been a lot of re-
cent work on making database interfaces more user friendly [4,
23]. This includes recent work on gestural query and scrolling in-
terfaces [22, 31, 33, 32, 36], visual query builders [6, 16], query
sharing and recommendation tools [24, 18, 17, 25], schema-free
databases [34], schema summarization [49], and visual analytics
tools [14, 30, 37, 21]. However, none of these tools can replace
spreadsheet software which has the ability to analyze, view, and
modify data via a direct manipulation interface [35] and has a large
user base.
2a. One way import of data from databases to spreadsheets.
There are various mechanisms for importing data from databases to
spreadsheets, and then analyzing this data within the spreadsheet.
This approach is followed by Excel’s Power BI tools, including
Power Pivot [45], with Power Query [46] for exporting data from
databases and the web or deriving additional columns and Power
View [46] to create presentations; and Zoho [42] and ExcelDB [44]
(on Excel), and Blockspring [43] (on Google Sheets [39]) enabling
the import from a variety of sources including the databases and
the web. Typically, the import is one-shot, with the data residing in
the spreadsheet from that point on, negating the scalability benefits
derived from the database. Indeed, Excel 2016 specifies a limit of
1M records that can be analyzed once imported, illustrating that the
scalability benefits are lost; Zoho specifies a limit of 0.5M records.
Furthermore, the connection to the base data is lost: any modifica-
tions made at either end are not propagated.

2b. One way export of operations from spreadsheets to databases.
There has been some work on exporting spreadsheet operations
into database systems, such as the work from Oracle [47, 48] as
well as startups 1010Data [40] and AirTable [41], to improve the
performance of spreadsheets. However, the database itself has no
awareness of the existence of the spreadsheet, making the integra-
tion superficial. In particular, positional and ordering aspects are
not captured, and user operations on the front-end, e.g., inserts,
deletes, and adding formulae, are not supported.
2c. Using a spreadsheet to mimic a database. There has been
some work on using a spreadsheet as an interface for posing tradi-
tional database queries. For example, Tyszkiewicz [38] describes
how to simulate database operations in a spreadsheet. However,
this approach loses the scalability benefits of relational databases.
Bakke et al. [9, 8, 7] support joins by depicting relations using a
nested relational model. Liu et al. [28] use spreadsheet operations
to specify single-block SQL queries; this effort is essentially a re-
placement for visual query builders. Recently, Google Sheets [39]
has provided the ability to use single-table SQL on its frontend,
without availing of the scalability benefits of database integration.
Excel, with its Power Pivot and Power Query [46] functionality
has made moves towards supporting SQL in the front-end, with the
same limitations. Like this line of work, we support SQL queries
on the spreadsheet frontend, but our focus is on representing and
operating on spreadsheet data within a database.
3. Array database systems. While there has been work on array-
based databases, most of these systems do not support edits: for
instance, SciDB [13] supports an append-only, no-overwrite data
model.

9. CONCLUSIONS
We presented DATASPREAD, a data exploration tool that holisti-

cally unifies spreadsheets and databases with a goal towards work-
ing with large datasets. We proposed three primitive data models
for representing spreadsheet data within a database, along with al-
gorithms for identifying the optimal hybrid data model arising from
recursive decomposition to give one or more primitive data models.
Our hybrid data models provide substantial reductions in terms of
storage (up to 20–50%) and formula evaluation (up to 50%) over
the primitive data models. Our primitive and hybrid data models,
coupled with positional mapping schemes, make working with very
large spreadsheets—over a billion cells—interactive.

10. REFERENCES
[1] Google sheets. https://www.google.com/sheets/about/.
[2] Microsoft excel. http://products.office.com/en-us/excel.
[3] ZK Spreadsheet.

https://www.zkoss.org/product/zkspreadsheet.
[4] S. Abiteboul, R. Agrawal, P. Bernstein, M. Carey, S. Ceri,

B. Croft, D. DeWitt, M. Franklin, H. G. Molina, D. Gawlick,
J. Gray, L. Haas, A. Halevy, J. Hellerstein, Y. Ioannidis,
M. Kersten, M. Pazzani, M. Lesk, D. Maier, J. Naughton,

12

https://www.google.com/sheets/about/
http://products.office.com/en-us/excel
https://www.zkoss.org/product/zkspreadsheet

H. Schek, T. Sellis, A. Silberschatz, M. Stonebraker,
R. Snodgrass, J. Ullman, G. Weikum, J. Widom, and
S. Zdonik. The lowell database research self-assessment.
Commun. ACM, 48(5):111–118, May 2005.

[5] A. Abouzied, J. Hellerstein, and A. Silberschatz. Dataplay:
Interactive tweaking and example-driven correction of
graphical database queries. In Proceedings of the 25th
Annual ACM Symposium on User Interface Software and
Technology, UIST ’12, pages 207–218, New York, NY, USA,
2012. ACM.

[6] A. Abouzied, J. Hellerstein, and A. Silberschatz. DataPlay:
interactive tweaking and example-driven correction of
graphical database queries. In Proceedings of the 25th
annual ACM symposium on User interface software and
technology, pages 207–218. ACM, 2012.

[7] E. Bakke and E. Benson. The Schema-Independent Database
UI: A Proposed Holy Grail and Some Suggestions. In CIDR,
pages 219–222. www.cidrdb.org, 2011.

[8] E. Bakke, D. Karger, and R. Miller. A spreadsheet-based user
interface for managing plural relationships in structured data.
In Proceedings of the SIGCHI conference on human factors
in computing systems, pages 2541–2550. ACM, 2011.

[9] E. Bakke and D. R. Karger. Expressive query construction
through direct manipulation of nested relational results. In
Proceedings of the 2016 International Conference on
Management of Data, pages 1377–1392. ACM, 2016.

[10] M. Bendre, B. Sun, D. Zhang, X. Zhou, K. C.-C. Chang, and
A. Parameswaran. Dataspread: Unifying databases and
spreadsheets. Proc. VLDB Endow., 8(12):2000–2003, Aug.
2015.

[11] M. Bendre, B. Sun, X. Zhou, D. Zhang, K. Chang, and
A. Parameswaran. Dataspread: Unifying databases and
spreadsheets. In VLDB, volume 8, 2015.

[12] D. Bricklin and B. Frankston. Visicalc 1979. Creative
Computing, 10(11):122, 1984.

[13] P. G. Brown. Overview of scidb: Large scale array storage,
processing and analysis. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data,
SIGMOD ’10, pages 963–968, New York, NY, USA, 2010.
ACM.

[14] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T.
Silva, and H. T. Vo. VisTrails: visualization meets data
management. In Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, pages
745–747. ACM, 2006.

[15] J. Callan, M. Hoy, C. Yoo, and L. Zhao. Clueweb09 data set,
2009.

[16] T. Catarci, M. F. Costabile, S. Levialdi, and C. Batini. Visual
query systems for databases: A survey. Journal of Visual
Languages & Computing, 8(2):215–260, 1997.

[17] U. Cetintemel, M. Cherniack, J. DeBrabant, Y. Diao,
K. Dimitriadou, A. Kalinin, O. Papaemmanouil, and S. B.
Zdonik. Query Steering for Interactive Data Exploration. In
CIDR, 2013.

[18] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis. Query
recommendations for interactive database exploration. In
Scientific and Statistical Database Management, pages 3–18.
Springer, 2009.

[19] C. E. L. Cormen, Thomas H. and R. L. Rivest. Introduction
to Algorithms. Cambridge. MA: MIT, 1990.

[20] D. Flax. Gesturedb: An accessible & touch-guided ipad app
for mysql database browsing. 2016.

[21] H. Gonzalez, A. Y. Halevy, C. S. Jensen, A. Langen,

J. Madhavan, R. Shapley, W. Shen, and J. Goldberg-Kidon.
Google fusion tables: web-centered data management and
collaboration. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, pages
1061–1066. ACM, 2010.

[22] S. Idreos and E. Liarou. dbTouch: Analytics at your
Fingertips. In CIDR, 2013.

[23] H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian,
Y. Li, A. Nandi, and C. Yu. Making database systems usable.
In Proceedings of the 2007 ACM SIGMOD international
conference on Management of data, pages 13–24. ACM,
2007.

[24] N. Khoussainova, M. Balazinska, W. Gatterbauer, Y. Kwon,
and D. Suciu. A Case for A Collaborative Query
Management System. In CIDR. www.cidrdb.org, 2009.

[25] N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu.
SnipSuggest: Context-aware autocompletion for SQL.
Proceedings of the VLDB Endowment, 4(1):22–33, 2010.

[26] B. Klimt and Y. Yang. Introducing the enron corpus. In
CEAS, 2004.

[27] A. Lingas, R. Y. Pinter, R. L. Rivest, and A. Shamir.
Minimum edge length partitioning of rectilinear polygons. In
Proceedings - Annual Allerton Conference on
Communication, Control, and Computing, pages 53–63,
1982.

[28] B. Liu and H. V. Jagadish. A Spreadsheet Algebra for a
Direct Data Manipulation Query Interface. pages 417–428.
IEEE, Mar. 2009.

[29] Z. Liu and J. Heer. The effects of interactive latency on
exploratory visual analysis. IEEE Trans. Vis. Comput.
Graph., 20(12):2122–2131, 2014.

[30] J. Mackinlay, P. Hanrahan, and C. Stolte. Show me:
Automatic presentation for visual analysis. Visualization and
Computer Graphics, IEEE Transactions on,
13(6):1137–1144, 2007.

[31] A. N. L. J. M. Mandel, A. Nandi, and L. Jiang. Gestural
Query Specification. Proceedings of the VLDB Endowment,
7(4), 2013.

[32] A. Nandi. Querying Without Keyboards. In CIDR, 2013.
[33] A. Nandi and H. V. Jagadish. Guided interaction: Rethinking

the query-result paradigm. Proceedings of the VLDB
Endowment, 4(12):1466–1469, 2011.

[34] L. Qian, K. LeFevre, and H. V. Jagadish. CRIUS:
user-friendly database design. Proceedings of the VLDB
Endowment, 4(2):81–92, 2010.

[35] B. Shneiderman. Direct Manipulation: A Step Beyond
Programming Languages. IEEE Computer, 16(8):57–69,
1983.

[36] M. Singh, A. Nandi, and H. V. Jagadish. Skimmer: rapid
scrolling of relational query results. In Proceedings of the
2012 ACM SIGMOD International Conference on
Management of Data, pages 181–192. ACM, 2012.

[37] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for
query, analysis, and visualization of multidimensional
relational databases. Visualization and Computer Graphics,
IEEE Transactions on, 8(1):52–65, 2002.

[38] J. Tyszkiewicz. Spreadsheet as a relational database engine.
In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, pages 195–206. ACM,
2010.

[39] http:/google.com/sheets. Google Sheets (retrieved March 10,
2015).

[40] https://www.1010data.com/. 1010 Data (retrieved March 10,

13

http:/google.com/sheets
https://www.1010data.com/

2015).
[41] https://www.airtable.com/. Airtable (retrieved March 10,

2015).
[42] https://www.zoho.com/. Zoho Reports (retrieved March 10,

2015).
[43] http://www.blockspring.com/. Blockspring (retrieved March

10, 2015).
[44] http://www.excel-db.net/. Excel-DB (retrieved March 10,

2015).
[45] http://www.microsoft.com/en-us/download/details.aspx?id=

43348. Microsoft sql server power pivot (retrieved march 10,
2015).

[46] C. Webb. Power Query for Power BI and Excel. Apress,
2014.

[47] A. Witkowski, S. Bellamkonda, T. Bozkaya, N. Folkert,
A. Gupta, J. Haydu, L. Sheng, and S. Subramanian.
Advanced SQL modeling in RDBMS. ACM Transactions on
Database Systems (TODS), 30(1):83–121, 2005.

[48] A. Witkowski, S. Bellamkonda, T. Bozkaya, A. Naimat,
L. Sheng, S. Subramanian, and A. Waingold. Query by excel.
In Proceedings of the 31st international conference on Very
large data bases, pages 1204–1215. VLDB Endowment,
2005.

[49] C. Yu and H. V. Jagadish. Schema summarization. In
Proceedings of the 32nd international conference on Very
large data bases, pages 319–330. VLDB Endowment, 2006.

APPENDIX
A. OPTIMAL HYBRID DATA MODELS

In this section, we demonstrate that the following problem is
NP-HARD.

PROBLEM 2 (HYBRID-ROM). Given a spreadsheet with a
collection of cells C, identify the hybrid data model T with only
ROM tables that minimizes cost(T).
As before, the cost model is defined as:

cost(T) =

pX

i=1

s1 + s2 · (ri ⇥ ci) + s3 · ci + s4 · ri. (7)

The decision version of the above problem has the following struc-
ture: a value k is provided, and the goal is to test whether there is a
hybrid data model with cost(T) k.

We reduce the minimum edge length partitioning problem [27]
of rectilinear polygons to Problem 2, thereby showing that it is NP-
Hard. First, a rectilinear polygon is a polygon in which all edges
are either aligned with the x-axis or the y- axis. We consider the
problem of partitioning a rectilinear polygon into disjoint rectan-
gles using the minimum amount of “ink”. In other words, the min-
imality criterion is the total length of the edges (lines) used to form
the internal partition. Notice that this doesn’t correspond to the
minimality criterion of reducing the number of components. We
illustrate this in Figure 19, which is borrowed from the original
paper [27]. The following decision problem was shown to be NP-
Hard in [27]: Given any rectilinear polygon P and a number k, is
there a rectangular partitioning whose edge length does not exceed
k? We now provide the reduction.

PROOF FOR PROBLEM 2. Consider an instance of the polygon
partitioning problem with minimum edge length required to be at
most k. We are given a rectilinear polygon P . We now repre-
sent the polygon P in a spreadsheet by filling the cells interior
of the polygon, and not filling any other cell in the spreadsheet.
Let C = {C1, C2, . . . , Cm} represent the set of all filled cells

in the spreadsheet. We claim that a minimum edge length parti-
tion of the given rectilinear polygon P of length at most k exists
iff the following setting of the optimal hybrid data model problem:
s1 = 0, s2 = 2|C|+1, s3 = s4 = 1, where the storage cost should
not exceed k

0 = k+ Perimeter(P)
2 + s2|C| for some decomposition

of the spreadsheet.
) Let us assume that the spreadsheet we generate using P has

a decomposition of rectangles whose storage cost is less than k

0 =

k + Perimeter(P)
2 + s2|C|. We have to show that there exists a

partition with minimum edge length of at most k. We first make
the following key observations:

1. There exists a valid decomposition that doesn’t store any blank
cell. Let’s assume the contrary and consider a decomposition
that stores a blank cell. Since we are now storing |C|+1 cells
at minimum,

k

0
> s2(|C|+ 1) = |C|s2 + s2 = |C|s2 + 2|C|+ 1

k

0
> |C|(s2 + 1 + 1)

| {z }
storing each cell in a separate table

Therefore, if we have a decomposition that stores a blank cell,
we also have a decomposition that does not store any blank
cell and has lower cost.

2. There exists a decomposition of the spreadsheet where all the
tables are disjoint. The argument is similar to the previous
case since storing the same cell twice in different tables is
equivalent to storing an extra blank cell.

From our above two observations, we conclude that there exists
a decomposition where all tables are disjoint, and no table stores a
blank cell. Therefore, this decomposition corresponds to partition-
ing the given spreadsheet into rectangles. We represent this parti-
tion of the spreadsheet by T = {T1, T2, . . . , Tp}. We now show
that this partition of the spreadsheet corresponds to a partitioning
of the rectilinear polygon P with edge-length less than k.

cost(T) =

pX

i=1

s1 + s2 · (ri ⇥ ci) + s3 · ci + s4 · ri

=

pX

i=1

s1 + s2

pX

i=1

·(ri ⇥ ci) + s3

pX

i=1

ci + s4

pX

i=1

ri

substituting s1 = 0, s2 = 2|C|+ 1, s3 = s4 = 1, we get:

=

pX

i=1

0 + s2|C|+ 1 ·

pX

i=1

ci +

pX

i=1

ri

!

since cost(T) k

0 = k + Perimeter(P)
2 + s2|C|,

cost(T) = s2|C|+ 1 ·

pX

i=1

ci +

pX

i=1

ri

!

=)
pX

i=1

(ri + ci) k +
Perimeter(P)

2

=)
pX

i=1

Perimeter(Ti)

2
 k +

Perimeter(P)

2

=)
pX

i=1

Perimeter(Ti) 2⇥ k + Perimeter(P)

Since, the sum of perimeters of all the tables Ti counts the bound-
ary of P exactly once, and the edge length partition of P exactly

14

https://www.airtable.com/
https://www.zoho.com/
http://www.blockspring.com/
http://www.excel-db.net/
http://www.microsoft.com/en-us/download/details.aspx?id=43348
http://www.microsoft.com/en-us/download/details.aspx?id=43348

 10

 100

 1000

0.2 0.4 0.6 0.8 1.0

Ti
m

e
(m

s)

Sheet Density

 RCV
 ROM

 10

 100

 1000

30 50 70 90 100

Ti
m

e
(m

s)

#Columns

 RCV
 ROM

100

1000

104 105 106 107

Ti
m

e
(m

s)

#Rows

 RCV
 ROM

Figure 16: Update range performance vs (a) Sheet Density (b) Column Count (c) Row Count

 1

 10

 100

0.2 0.4 0.6 0.8 1.0

Ti
m

e(
m

s)

Sheet Density

 RCV
 ROM

 1

 10

 100

10 30 50 70 90 100

Ti
m
e(
m
s)

#Column

 RCV
 ROM

 1

 10

 100

104 105 106 107

Ti
m
e(
m
s)

#rows

 RCV
 ROM

Figure 17: Insert row performance vs (a) Sheet Density (b) Column Count (c) Row Count

twice, the partition of the spreadsheet T = {T1, T2, . . . , Tp} corre-
sponds to an edge-length partitioning of the given rectilinear poly-
gon P with edge-lengh less than k.

(Let us assume that the given rectilinear polygon P has a min-
imum edge length partition of length at most k. We have to show
that there exists a decomposition of the spreadsheet whose storage
cost is at most k0 = k+ Perimeter(P)

2 + s2|C|. Let us represent the
set of rectangles that corresponds to an edge length partition of P
of at most k as T = {T1, T2, . . . , Tp}. We shall use the partition
T of P as the decomposition of the spreadsheet itself:

cost(T) =

pX

i=1

s1 + s2 · (ri ⇥ ci) + s3 · ci + s4 · ri

=

pX

i=1

s1 + s2

pX

i=1

·(ri ⇥ ci) + s3

pX

i=1

ci + s4

pX

i=1

ri

substituting s1 = 0, s2 = 2|C|+ 1, s3 = s4 = 1, we get:

=

pX

i=1

0 + s2|C|+ 1 ·

pX

i=1

ci +

pX

i=1

ri

!

= s2|C|+
pX

i=1

(ri + ci) = s2|C|+
pX

i=1

Perimeter(Ti)

2

since
Pp

i=1 Perimeter(Ti) = 2⇥ k + Perimeter(P), we have:

cost(T) = s2|C|+ k +
Perimeter(P)

2
= k

0

=) cost(T) = k

0

Therefore, the decomposition of the spreadsheet using T corre-
sponds to a decomposition whose storage cost equals k0. Note that
our reduction can be done in polynomial time. Therefore we can
solve the minimum length partitioning problem in polynomial time
if we have a polynomial time solution to the optimal storage prob-
lem. However, since it is shown in [27] that the minimum length
partitioning problem is NP-Hard, the optimal hybrid data model
problem is NP-Hard. This completes our proof.

Figure 19: Minimum number of rectangles (– – –) does not coin-
cide with minimum edge length (· · ·)

B. HYBRID DATA MODEL: EXTENSIONS
In this section, we discuss a number of extensions to the cost

model of the hybrid data model. We will describe these exten-
sions to the cost model, and then describe the changes to the basic
dynamic programming algorithm; modifications to the greedy and
aggressive greedy decomposition algorithms are straightforward.

Access Cost. So far, within our cost model, we have only been fo-
cusing on storage. As it turns out, our cost model can be extended
in a straightforward manner to handle access cost — both scrolling-
based operations, and formulae, and our dynamic programming al-
gorithms can similarly be extended to handle access cost without
any substantial changes. We focus on formulae since they are often
the more substantial cost of the two; scrolling-based operations can
be similarly handled. For formulae, there are multiple aspects that
contribute to the time for access: the number of tables accessed, and
within each table, since data is retrieved at a tuple level, the num-
ber of tuples that need to be accessed, and the size of these tuples.
Once again, each of these aspects can be captured within the cost
model via constants similar to s1, . . . , s5, and can be seamlessly
incorporated into the dynamic programming algorithm. Thus, we
have:

THEOREM 5 (OPTIMALITY WITH ACCESS COST). The opti-
mal ROM, COM, and RCV-based hybrid data model based on re-
cursive decomposition, across both storage and access cost, can be
determined via dynamic programming.

Size Limitations of Present Databases. Current databases im-
pose limitations on the number of columns within a relation1; since
spreadsheets often have an arbitrarily large number of rows and
1Oracle column number limitations: https://docs.oracle.com/cd/B19306_01/server.

15

https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032

 0.1

 1

 10

 100

103 104 105 106 107

Ti
m

e
(m

s)

DataSize

 Row number as-is
 Monotonic

 Hierarchical

 0.1

 1

 10

 100

103 104 105 106 107

Ti
m

e
(m

s)

DataSize

 Row num as-is
 Monotonic

 Hierarchical

 0.1

 1

 10

 100

103 104 105 106 107

Ti
m

e
(m

s)

DataSize

 Row num as-is
 Monotonic

 Hierarchical

Figure 18: Positional mapping performance for (a) Select (b) Insert (c) Delete

columns (sometimes 10s of thousands each), we need to be care-
ful when trying to capture a spreadsheet area within a collection of
tables that are represented in a database.

This is relatively straightforward to capture in our context: in the
case where we don’t split (Equation 3), if the number of columns
is too large to be acceptable, we simply return 1 as the cost.

THEOREM 6 (OPTIMALITY WITH SIZE CONSTRAINTS). The
storage optimal ROM, COM, and RCV-based hybrid data model,
with the constraint that no tables violate size constraints, based on
recursive decomposition, can be determined via dynamic program-
ming.
Incorporating the Costs of Indexes. Within our cost model, it is
straightforward to incorporate the costs associated with storage of
indexes, since the size of the indexes are typically proportional to
the number of tuples for a given table, and the cost of instantiating
an index is another fixed constant cost. Since our cost model is
general, by suitably reweighting one or more of s1, s2, s3, s4, we
can capture this aspect within our cost model, and apply the same
dynamic programming algorithm.

THEOREM 7 (OPTIMALITY WITH INDEXES). The storage op-
timal ROM-based hybrid data model, with the costs of indexes in-
cluded, based on recursive decomposition, can be determined via
dynamic programming.

C. RELATIONAL OPERATIONS SUPPORT
In addition to standard spreadsheet operations, DATASPREAD

benefits from being built on a standard relational database, and as
a result, seamlessly supports standard relational operations as well.
To support relational operations from the spreadsheet interface, and
in particular to enable table declaration and query execution, we in-
troduce two functions in our system, namely DBTable and DBSQL.

DBTable enables a user to declare a portion of the spreadsheet
front-end as a database table. Here, the displayed table cells re-
flect the content of the database table. This is a cue for the hybrid
optimizer to “force” this region to be stored as a separate ROM ta-
ble. Note that there is a two-way synchronization for such a table,
i.e., any updates to the table from the front-end is reflected at the
back-end and vice versa.

DBSQL enables a user to execute arbitrary SQL queries combin-
ing data present on the spreadsheet, and other tables present in the
relational database. To support positional addressing or referenc-
ing of spreadsheet data using DBSQL, we introduce two functions:
RangeValue and RangeTable. RangeValue allows a user to refer a scalar
value contained in a cell, e.g., SELECT FROM Actors WHERE ActorId =
RangeValue(A1); here, RangeValue(A1) refers to the value of cell A1.
RangeTable allows a user to refer to a range, and perform operations
on this range like a database table. This enables any range on a
spreadsheet to be treated as a table, e.g., SELECT FROM Actors NATU-
RAL JOIN RangeTable(A1:D100).
102/b14237/limits003.htm#i288032; MySQL column limitations: https://dev.mysql.
com/doc/mysql-reslimits-excerpt/5.5/en/column-count-limit.html; PostgreSQL col-
umn limitations: https://www.postgresql.org/about/

D. ADDITIONAL EXPERIMENTS
D.1 Scalability of Inserts and Deletes

We now supplement our evaluation of the scalability of selects
in the main body of the paper with an evaluation of the scalabil-
ity of inserts and updates for the primitive data models on a syn-
thetic dataset. Figures 16 and 17 depict the corresponding charts
for updating a region of 100 rows and 20 columns, and inserting
one row of 100 columns for the primitive data models. In Fig-
ures 16, we find that the update time taken for RCV is a lot higher
than the time for inserts or selects. This is because in this bench-
mark, DATASPREAD assumes that the entire region update happens
at once, and fires 100⇥ 20 = 2000 update queries one at a time to
the underlying database, to update each individual cell. In practice,
users may only update a small number of cells at a time; and fur-
ther, we may be able to batch these queries or issue them in parallel
to further save time. In Figures 17, we find that like in Figures 16,
the time taken for updates on ROM is faster than RCV since it
only needs to issue one query, while RCV needs to issue multiple
queries. However, in this case, since the number of queries issued
is small, the response time is always within 100ms.

D.2 Impact of Positional Mapping
We now compare the performance of our different positional

mapping methods as described in Section 5. Specifically, we con-
trast between (i) storing row-number-as is (denoted row-number-
as-is), (ii) monotonic positional mapping (denoted monotonic), and
(iii) hierarchical positional mapping (denoted hierarchical). As de-
scribed previously, we operate on a dense dataset ranging from 103

to 107 rows, with 100 columns, all of whose cells are filled. The
evaluation was performed on a single ROM table that captures all
of the data on the sheet; evaluations for other primitive data models
are similar. Figure 18 displays the average time taken to perform a
fetch, insert, and delete of a single (random) row, averaged across
1000 iterations.

We see that the storing the row number as-is performs well for
the fetch operation. However, the time for insert and delete opera-
tions increases rapidly with the data size, due to cascading updates
of subsequent rows; thus, beyond a data size of 105, row number-
as-is is no longer interactive (> 500ms) for insert and delete. On
the other hand, the response time of the monotonic positional map-
ping for fetch operation increases rapidly with data size. This is
again expected, as we need to search linearly through the positional
mapping keys to retrieve the required records—making it infeasible
to use on large datasets. Lastly, we find that hierarchical positional
mapping performs well for all operations and performance does not
get degrade even with data sizes of 109 tuples. In comparison with
the other schemes, hierarchical positional mapping performs all the
three aforementioned operations in few milliseconds, which makes
it the practical choice for positional mapping for DATASPREAD.

16

https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm#i288032
https://dev.mysql.com/doc/mysql-reslimits-excerpt/5.5/en/column-count-limit.html
https://dev.mysql.com/doc/mysql-reslimits-excerpt/5.5/en/column-count-limit.html
https://www.postgresql.org/about/

	Introduction
	Spreadsheet Usage in Practice
	Methodology
	Real Spreadsheet Datasets
	User Survey

	Structure Evaluation
	Operation Evaluation

	Spreadsheet Desiderata
	Representing Spreadsheets
	High-level Problem Description
	Primitive Data Models
	Hybrid Data Model: Intractability
	Optimal Recursive Decomposition
	Greedy Decomposition Algorithms
	Extensions

	Positional Mapping
	DataSpread Architecture
	Experimental Evaluation
	Experimental Setup
	Impact of Hybrid Data Models
	Scalability of Data Models
	Evaluation of Positional Mapping

	Related Work
	Conclusions
	References
	Optimal Hybrid Data Models
	Hybrid Data Model: Extensions
	Relational Operations Support
	Additional Experiments
	Scalability of Inserts and Deletes
	Impact of Positional Mapping

