
CrowdGather: Entity Extraction over Structured Domains

Theodoros Rekatsinas
University of Maryland,

College Park

thodrek@cs.umd.edu

Amol Deshpande
University of Maryland,

College Park

amol@cs.umd.edu

Aditya Parameswaran
University of Illinois,
Urbana-Champaign

adityagp@illinois.edu

ABSTRACT
Crowdsourced entity extraction is often used to acquire data for
many applications, including recommendation systems, construc-
tion of aggregated listings and directories, and knowledge base con-
struction. Current solutions focus on entity extraction using a single
query, e.g., only using “give me another restaurant”, when assem-
bling a list of all restaurants. Due to the time and cost of human
labor, just focusing on a single query limits the practical applica-
bility of these solutions.

In this paper, we leverage a structured entity domain, i.e., do-
mains that can be fully described by a collection of attributes, each
potentially displaying hierarchical structure. Given such an entity
domain, we enable a richer space of queries, e.g., “give me another
Moroccan restaurant in Manhattan that does takeout”. Naturally,
enabling a richer space of queries comes with a host of issues, es-
pecially since many queries return empty answers. We develop
new statistical tools that enable us to reason about the gain of issu-
ing additional queries given little to no information, and show how
we can exploit the overlaps across the results of queries for differ-
ent points of the data domain to obtain accurate estimates of the
gain. We cast the problem of budgeted entity extraction over large
domains as an adaptive optimization problem that seeks to maxi-
mize the number of extracted entities, while minimizing the overall
extraction costs. We evaluate our techniques with experiments on
both synthetic and real-world datasets, demonstrating a yield of up
to 3.3X over competing approaches for the same budget.

1. INTRODUCTION
Combining human computation with traditional computation, com-

monly referred to as crowdsourcing, has been recently proven bene-
ficial in extracting knowledge and acquiring data for many applica-
tion domains, including recommendation systems [2], knowledge
base completion [17], entity extraction and structured data collec-
tion [24, 31]. In fact, extracting information, and entities in par-
ticular, from the crowd has been shown to provide access to more
fine-grained information that may belong to the long tail of the web
or even be completely unavailable on the web [9, 23, 34].

A fundamental challenge in crowdsourced entity extraction is
reasoning about the completeness of the extracted information. More
precisely, given a task that seeks to extract entities from a specific
domain by asking human workers, e.g., “extract all restaurants in
New York”, it is not easy to judge if we have extracted all enti-
ties (in this case restaurants). This is because we are in an “open
world” [9] scenario.

Recent work [31] has considered the problem of crowdsourced
entity extraction using a single type of query that is asked to hu-
mans; for our restaurant case, the query will be “give me another
restaurant in New York”. That paper determines how many times

this query must be asked to different human workers before we are
sure we have extracted all restaurants in New York. However, given
the latency and monetary cost inherent in leveraging crowdsourc-
ing, it is easy to see that just using this query repeatedly will not be
practical for real-world applications, for two coupled reasons: (a)
wasted cost: we will keep receiving the most popular restaurants
and will have to wait a long while before we receive new or unseen
restaurants (b) lack of coverage: beyond a point all the restaurants
we get will already be present in our set of extracted entities —
thus, for the less popular restaurants, we may never end up receiv-
ing them at all.

In this paper, our goal is to make crowdsourced entity extraction
practical. To do so, we leverage a structured entity domain, i.e.,
a domain that can be fully described by a collection of attributes,
each potentially displaying hierarchical structure. For example, in
our restaurant case, we could have one attribute about location, one
about cuisine, and one about whether the restaurant does takeout.
We can then leverage this entity domain to use a much richer space
of queries asked to human workers, considering all combinations of
values for each of these attributes, e.g., “give me another Moroc-
can restaurant in Manhattan, New York, that does takeout”. In this
manner, we can leverage these specific, targeted queries to extract
not-so popular entities with attribute values set to specific ones,
e.g., in this case, cuisine is “Moroccan”, location is “Manhattan”,
and takeout is “Yes”.

If we view the structured data domain as a partially ordered set
(poset), then each query can be mapped to a node in the graph de-
scribing its topology. Thus, our goal is to traverse the graph cor-
responding to the input poset by issuing queries corresponding to
various nodes, often multiple times at each node. However, the
poset describing the domain can be often large, leading to a host
of additional challenges in deciding which queries to issue at any
node: (a) Sparsity: Many of the nodes in the poset are likely to
be empty, i.e., the queries corresponding to those nodes are likely
to not have any answers; avoiding asking queries corresponding to
these nodes is essential to keep monetary cost low. (b) Interrela-
tionships: Many of the nodes in the poset are “coupled” with one
another; for example, the results from a few queries correspond-
ing to “give me another Moroccan restaurant in Manhattan, New
York” can inform whether issuing queries corresponding to “give
me another Moroccan restaurant in Manhattan, New York, that does
takeout” is useful or not. We elaborate more on these challenges in
Section 1.1 using examples from a real-world scenario.

Unfortunately, the techniques from Trushkowsky et al. [31] do
not directly apply to the scenario where we are traversing a poset
corresponding to this structured data domain, and new techniques
are needed. To mitigate the shortcomings, one needs to tune the
queries that are asked. However, deciding which queries to ask

among a large number of possible queries (exponential in the num-
ber of attributes describing the input domain) and when and how
many times to ask each query, are both critical challenges that need
to be addressed. Furthermore, unlike the main techniques proposed
by Trushkowsky et al. [31], we focus on the budgeted case, where
we are given a budget and we want to maximize the number of re-
trieved entities; we believe this is a more practical goal, instead of
the goal of retrieving all entities. Our crowdsourced entity extrac-
tion techniques can be useful for a variety of applications that are
naturally coupled to a structured entity domain, including:
• A newspaper that wants to collect a list of today’s events to

be displayed on the events page every day. In this case, the
structured data domain could include event type (e.g., music
concerts vs. political rallies) or location, among other attributes.
• A stock trading firm wants to collect a list of stocks that have

been mentioned by popular press on the previous day. In this
case, the structured data domain could include stock type, pop-
ular press article type, or whether the mention was positive or
negative, among other attributes.
• A real estate expert wants to curate a list of houses available for

viewing today. The structured data domain in this case could
include the price range, the number of floors, etc.
• A university wants to find all the faculty candidates on the job

market. The structured data domain in this scenario includes
the university of the applicant, specialization, and whether they
are Ph.D./Postdoc.
• The PC chair of a new conference wants to find potential re-

viewers. The domain describing each of the candidates can be
characterized by the university or company of the reviewer, ex-
pertise, qualifications, and so on.

1.1 A Real-World Scenario
To further exemplify the aforementioned challenges we review

a large-scale real-world scenario where crowdsourcing is used to
extract entities. We consider Eventbrite (www.eventbrite.com),
an online event aggregator, that relies on crowdsourcing to compile
a directory of events with detailed information about the location,
type, date and category of each event. Typically, event aggregators
are interested in collecting information about diverse events span-
ning from conferences and music festivals to political rallies across
different location, i.e., countries or cities. In particular, Eventbrite
collects information about events across different countries in the
world. Each country is further split into cities and areas across the
country. Moreover, events are organized according to their type
and topic. We collected a dataset from Eventbrite spanning over
63 countries that are divided into 1,709 subareas (e.g., states) and
10,739 cities, containing events of 19 different types, such as ral-
lies, tournaments, conferences, conventions, etc. and a time period
of 31 days spanning over the months of October and November.

It is easy to see that two of the three dimensions, i.e., location
and time, describing the domain of collected events are hierarchi-
cally structured. The overall domain can be fully specified if we
consider the cross product across the possible values for location,
event type and time. For each of the location, time, type dimensions
we also consider a special wildcard value. Taking the cross-product
across the possible values of these dimensions results in poset with
a total of 8,508,160 nodes containing 57,805 distinct events over-
all. We point out that the events associated with a node in the poset
overlap with the events corresponding to its descendants. First, we
demonstrate how the sparsity challenge applies to Eventbrite.

EXAMPLE 1. We plot the number of events for each node in the

10
0

10
1

10
2

10
3

10
4

10
5

0â�� 20â��40â��60â��80â��100â��120â��140â��160â��180â��N
u
m

b
e

r
o

f
E

v
e
n

ts
 i
n
 N

o
d
e

Poset Node Index (x 10
3
)

Eventbrite Domain Population

Figure 1: The attributes describing the events domain and the hierarchical
structure of each attribute.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5 10 15 20 25 30 35 40 45

J
a

c
c
a
rd

 I
n
d
e
x

Node-Pair Index

Pairwise Overlap
 for the 10 Largest Eventbrite Nodes

Figure 2: Pairwise overlaps for the 10 most populous nodes.

poset describing the event domain in the Eventbrite dataset. Out
of 8,508,160 nodes only 175,068 nodes are associated with events
while the remaining have zero events. Figure 1 shows the number
of events per node (y-axis is in log-scale). As shown the most of the
populated nodes have less than 100 events. Additionally, the most
populated nodes of the domain correspond to nodes from the higher
levels of the poset. When extracting events from such a sparse do-
main one needs to carefully decide on the crowdsourced queries to
be issued especially if operating under a monetary budget.

As mentioned before, a critical challenge in such large domains is
deciding on the queries to ask. However, the hierarchical structure
of the data domain presents us with an opportunity. One approach
would be to perform a top-down traversal of the poset and issue
queries at the different nodes. Nevertheless, this gives rise to a se-
ries of challenges: (i) how can one decide on the number of queries
to be asked at each node, (ii) when should one progress to deeper
levels of the poset and (iii) which subareas should be explored. We
elaborate on these in Section 2. Next, we focus on the second chal-
lenge, i.e., the interdependencies across poset nodes.

EXAMPLE 2. We consider again the Eventbrite dataset and plot
the pairwise overlaps of the ten most populous nodes in the domain.
Figure 2 shows the Jaccard index for the corresponding node pairs.
As shown the event populations corresponding to these nodes over-
lap significantly. It is easy to see that when issuing queries at a
certain domain node, we not only obtain events corresponding to
this node but to other nodes in the domain as well.

A critical issue that stems from the overlaps across nodes is being
able to decide how many answers to expect when issuing an addi-
tional query at a node whose underlying population overlaps with
nodes associated with previous queries. In Section 2, we elaborate
more on the dependencies across nodes of the poset.

1.2 Contributions
Motivated by the examples above, we study the problem of bud-

geted crowd entity extraction over structured domains. More pre-
cisely, we focus on domains described by a collection of attributes,

each following a known hierarchical structure, i.e., we assume that
for each attribute the corresponding hierarchy is known.

We propose a novel algorithmic framework that exploits the struc-
ture of the domain to maximize the number of extracted entities un-
der given budget constraints. In particular, we view the problem of
entity extraction as a multi-round adaptive optimization problem.
At each round we exploit the information on extracted entities ob-
tained by previous queries to adaptively select the crowd query that
will maximize the gain and cost trade-off at each round. The gain
of a query is defined as the number of new unique entities extracted
by it. We extend on previous query interfaces that considered only
questions of the type “Give me k more entities from a domain”
and examine generalized queries that can also include an exclude
list. In general such queries are of the type “Give me k more enti-
ties that from a domain that are not in {A,B, ...}”. Building upon
techniques from the species estimation and the multi-armed bandits
literature, we introduce a new methodology for estimating the gain
for such generalized queries and show how the hierarchical struc-
ture of the domain can be exploited to improve the accuracy of our
gain estimates. Our main contributions are as follows:
• We study the challenge of information flow across entity ex-

traction queries for overlapping parts of the data domain.
• We formalize the notion of an exclude list for crowdsourced en-

tity extraction queries and show how previously proposed gain
estimators can be extended to handle such queries.
• We develop a new technique to estimate the gain of generalized

entity extraction queries under the presence of dependent infor-
mation. The proposed technique exploits the structure of the
data domain to obtain accurate estimates.
• We introduce an adaptive optimization algorithm that takes as

input the gain estimates for different types of queries and iden-
tifies querying policies that maximize the total number of re-
trieved entities under given budget constraints.
• Finally, we show that our techniques can effectively solve the

problem of budgeted crowd entity extraction for large data do-
mains on both real-world and synthetic data.

2. PRELIMINARIES
In this section we first describe our structured data domain, then

describe entities and entity extraction queries or interfaces, along
with the response and cost model for these queries. Then we focus
on crowdsourced entity extraction using these interfaces and con-
sider the problem of maximizing the number of extracted entities.
In particular, we define the problem of crowd entity extraction over
structured domains under budget constraints. Then, we formally
introduce the challenge of dependencies across queries when ex-
tracting entities from structured domains, and finally, we present
an overview of our proposed algorithmic framework.

2.1 Structured Data Domain
Let D be a data domain described by a set of discrete attributes
AD = {A1, A2, . . . , Ad}. Let dom(Ai) denote the domain of
each attribute Ai ∈ AD . We focus on domains where each at-
tribute Ai is hierarchically organized. For example, consider the
Eventbrite domain introduced in Section 1.1. The data domain D
corresponds to all events and the attributes describing the entities in
D areAD = {“Event Type”, “Location”, “Date”}. Figure 3 shows
the hierarchical organization of each attribute.

The domain D can be viewed as a poset, i.e., a partially ordered
set, corresponding to the cross-product of all available hierarchies1.
1Note that D is not a lattice since there is no unique infimum.

Eventbrite Event Data Domain

Event Type

Location Country State City

Date Month Day

Figure 3: The attributes describing the Eventbrite domain and the hierar-
chical structure of each attribute.

Part of the poset corresponding to the previous example is shown
in Figure 4. We denote this cross-product as HD . As can be seen
in Figure 4, there are nodes, such as {}, where no attributes are
specified, and nodes, such as {X1} and {C1}where just one of the
attribute values is specified, as well as nodes, such as {X2, ST2},
where multiple attribute values are specified.

{}

{EventType X1} {Country C1}

{State ST1} {State ST2}

{EventType X2}

{X1, C1} {X2, C1}

{X1, ST1} {X1, ST2} {X2, ST1} {X2, ST2}

Figure 4: Part of the poset defining the entire event entity domain described
by the attributes in Figure 3.

2.2 Entities and Entity Extraction Queries
Entities. Our goal is to extract entities that belong to the domain
D. We assume that each entity e can be uniquely associated with
one of the leaf nodes in the hierarchyHD; that is, there is a unique
set of “most-specific” values of A1, . . . , Ad for every entity. For
example, in our Eventbrite dataset, each entity (here, a local event)
takes place in a specific city, and on a specific day. Our techniques
also work for the case when entities can be associated only with
“higher level” nodes, but we focus on the former case for simplicity.

Queries. Next, we describe queries for extracting entities from the
crowd. First, a query q is issued at a node v ∈ HD; that is, a
query specifies zero or more attribute values from A1, . . . , Ad that
are derived from the corresponding values of v, implicitly requiring
the worker to find entities that match the specified attribute values.

Given a query issued at a node, there are three different config-
urations one can use to extract entities from the crowd: The first
configuration corresponds to single entity queries where workers
are required to provide “one more” entity that match the specified
attribute values mentioned in the query. Considering the Eventbrite
example introduced in the previous section, an example of a sin-
gle entity query would be asking a worker to provide “a concert in
Manhattan, New York”. The second configuration corresponds to
queries of size k where workers are asked to provide up to k dis-
tinct entities. Finally, the last configuration corresponds to exclude
list queries. Here, workers are additionally provided with l entities
that have already been extracted and are required to provide up to k
distinct entities under the constraint that none of them is included
in this exclude list of size l. It is easy to see that the last configu-
ration generalizes the previous two. Therefore, in the remainder of
the paper, we will only consider queries using the third configura-
tion. To describe a query, we will use the notation q(k, l) denoting
a query of size k accompanied with an exclude list of length l.

Query Response. Given a query q(k, l) issued at a node v ∈ HD ,
with an exclude list of entities S, |S| = l, a human worker gives us
k distinct entities that belong to the domain D, match the specified
attribute values mentioned in the query (derived from v), and are
not present in S. Furthermore, the human worker provides us the
information for the attributes that are not specified in q for each of
the k entities. For example, if our query is “a concert in Manhattan,
New York”, with k = 1, l = 0, the human worker gives us one
concert in Manhattan, New York, but also gives us the day on which
the concert will take place (here, the missing, unspecified attribute).
If the query is “a concert in the US”, with k = 1, l = 0, the human
worker gives us one concert in the US, but also gives the day on
which the concert will take place, as well as the specific city. If less
than k entities are present in the underlying population, workers
have the flexibility to report either an empty answer or a smaller
number of entities (Section 3.4).

While the reader may wonder if getting additional attributes for
entities is necessary, note that this information allows us to reason
about which all nodes in HD the entity belongs to; without this,
it is impossible to effectively traverse the poset. Furthermore, we
find that in most practical applications, it is useful to get the values
of the missing attributes in order to organize and categorize the
extracted entities better.

Notice also that we assume that human workers specify or ex-
tract an entity correctly (e.g., no abbreviations, typos, and so on),
once again for simplicity. It is straightforward to use an entity res-
olution or string matching (e.g., jaccard coefficient) algorithm to
group identical entities together. Furthermore, since we are getting
all attributes for each entity, we can use these attributes to further
ascertain similarity of entities. In our experiments on real datasets,
we found that there were no cases where humans introduced errors
to the attribute values of extracted entities. Only minor errors (e.g.,
misspelled entity names) were detected.

Query Cost. In a typical crowdsourcing marketplace, tasks have
different costs depending on their difficulty. Thus, crowdsourced
queries of different difficulties should also exhibit different costs.
Let c()̇ be a cost function for any query q(k, l). This cost func-
tion should obey the following properties: (a) given a query with a
fixed query size its cost should increase as the size of its exclude
list is increasing, and (b) given a query with a fixed exclude list
size its cost should increase as the number of requested answer in-
creases. These are fixed upfront by the interface designer based on
the amount of work involved.

2.3 Crowdsourced Entity Extraction
The basic version of crowdsourced entity extraction [31] seeks to

extract entities that belong to D, by simply using repeated queries
at the root node, with k = 1, l = 0 (subsequent versions relax l
to be non-zero). However, when considering large entity domains,
such as the event domain, one may need to issue a series of entity
extraction queries at multiple nodes in HD — often overlapping
with each other — so that the entire domain is covered. Issuing
queries at different nodes ensures that the coverage across the do-
main will be maximized.

We let π denote a querying policy, that is, a chain of queries at
different nodes in HD . Notice that multiple queries can be issued
at the same node. Let C(π) denote the overall cost, in terms of
monetary cost (or equivalently, latency, since the more queries are
issued, the more time the policy will take) of a querying policy π.
We define the gain of a querying policy π as the total number of
unique entities, denoted by E(π) extracted when following policy
π. Thus, there is a natural tradeoff between the gain (i.e., the num-
ber of extracted entities) and the cost of policies.

Here, we require that the user will only provide a monetary bud-
get τc imposing a constraint on the total cost of a selected query-
ing policy, and optimize over all possible querying policies across
different nodes ofHD . Our goal is to identify the policy that max-
imizes the number of retrieved entities under the given budget con-
straint. More formally, we define the problem of budgeted crowd
entity extraction as follows:

PROBLEM 1 (BUDGETED CROWD ENTITY EXTRACTION). Let
D be a given entity domain and τc a monetary budget on the total
cost of issued queries. The Budgeted Crowd Entity Extraction prob-
lem seeks to find a querying policy π∗S using queries over nodes in
HD that maximizes the number of unique entities extracted E(π∗S)
under the constraint C(π∗S) ≤ τc.

Notice that due to the different query configurations, the optimal
querying policy for budgeted crowd entity extraction should also
identify the optimal configuration (k, l) for each query in π∗S .

The cost of a querying policy π is defined as the total cost of all
queries issued by following π. We have that C(π) =

∑
q∈π c(q)

where the cost of each query q is defined according to a cost model
specified by the user. Computing the total cost of a policy π is
easy. However, the gain E(π) of a policy π is unknown as we do
not know in advance the entities corresponding to each node inHD ,
and hence, needs to be estimated, as we discuss next.

2.4 Underlying Query Response Model
In order to reason about the occurrence of entities as response to

specific queries, we need an underlying query response model. Our
query response model is based on the notion of popularity.

Popularities. We assume that each underlying entity has a fixed,
unknown popularity value with respect to crowd workers. Given
a query q(1, 0), asking for one entity and using an exclude list of
size 0, the probability that we will get entity e that satisfies the
constraints specified by q is nothing but the popularity value of e
divided by the popularity value of all entities e′ that also satisfy the
constraints in q. As an example, if there are only two entities e1, e2
that satisfy the constraints specified by a given query q1, with popu-
larity values 3 and 2, then the probability that we get e1 on issuing
a query q1(1, 0) is 3/5. If an exclude list S is specified, then the
probability that we will get an entity e /∈ S is the popularity value
of e divided by the popularity values of all entities e′ /∈ S also sat-
isfying the constraints specified by q. Note that, we do not assume
that all workers follow the same popularity distribution. Rather the
overall popularity distribution can be seen as an average of the pop-
ularity distributions across all workers.

Thus, since workers are asked to provide a limited number of
entities as response to a query, each entity extraction query can be
viewed as taking a random sample from an unknown population of
entities. In the rest of the paper, we will refer to the distribution
characterizing the popularities of entities in a population of entities
as the popularity distribution of the population. We note that this is
equivalent to the underlying assumption in the species estimation
literature [6] (Section 3).

Then, estimating the gain of a query q(k, l) at a node v ∈ HD
is equivalent to estimating the number of new entities extracted by
taking additional samples from the population of v given all the
retrieved entities by past samples associated with node v [31].

Samples for a Node. When extracting entities, the retrieved enti-
ties for a node v can correspond to two different kinds of samples:
(i) those that were extracted by considering the entire population
corresponding to node v (ii) and those that we obtained by sam-
pling only a part of the population corresponding to v. Samples

for a node v can be obtained either by querying node v or by indi-
rect information flowing to v by queries at other nodes. We refer to
the latter case as dependencies across queries.

{}

{EventType X1} {Country C1}

{State ST1} {State ST2}

{EventType X2}

{X1, C1} {X2, C1}

{X1, ST1} {X1, ST2} {X2, ST1} {X2, ST2}

Querying node {EventType X1}

Figure 5: An example query that extract an entity sample from the red node.
The nodes marked with green correspond to the nodes for which indirect
entity samples are retrieved.

We use an example considering the poset in Figure 4, to illus-
trate these two cases. The example is shown in Figure 5. As-
sume a query q(k, 0) issued against node {EventType X1}. As-
sume that the query result contains entities that correspond only to
node {X1,ST2}. The green nodes in Figure 5 are nodes for which
samples are obtained indirectly without querying them. Notice, that
all these nodes are ancestors of {X1,ST2}. Analyzing the samples
for the different nodes we have:
• The samples corresponding to nodes {X1, C1} and {X1,ST2}

were obtained by considering their entire population. The rea-
son is that node {EventType X1} is an ancestor of both and the
entity population corresponding to it fully contains the popula-
tions of both {X1,C1} and {X1,ST1}.
• The samples corresponding to nodes { }, {Country C1} and
{State ST2} were obtained by considering only part of their
population. The reason is that the population of node {EventType
X1} does not fully contain the populations of these nodes.

Samples belonging to both types need to be considered when
estimating the gain of a query at a node in v ∈ HD . To address this
issue we merge the extracted entities for each node in HD into a
single sample and treat the unified sample as being extracted from
the entire underlying population of the node. As we discuss later in
Section 4 we develop querying strategies that traverse the posetHD
in a top-down approach, hence, the number of samples belonging
in the first category, i.e., samples retrieved considering the entire
population of a node, dominates the number of samples retrieved by
considering only part of a node’s population. Moreover, it has been
shown by Hortal et al. [12] that several of the techniques that can be
used to estimate the gain of a query(see Section 3) are insensitive
to differences in the way the samples are aggregated.

2.5 Framework Overview
We present an overview of our proposed framework for solv-

ing the problem of budgeted crowd entity extraction over struc-
tured domains. We view the optimization problem described in
Section 2.3 as a multi-round adaptive optimization problem where
at each round we solve the following subproblems:
• Estimating the Gain for a Query. For each node in v ∈ HD ,

consider the retrieved entities associated with v and estimate
the number of new unique entities that will be retrieved if a
new query q(k, l) is issued at v. This needs to be repeated for
all possible configurations of k and l.
• Detecting the Optimal Querying Policy. Using the gain es-

timates from the previous problem as input, identify the next

Estimate the gain for each candidate poset node:

use the retrieved entities and estimate the number

of new entities to be extracted for different

query sizes k and different exclude list sizes l

Using the gain estimates as input:

select the optimal poset node, query size k and

exclude list size l and execute a new crowd entity

extraction query

Iterate

until no

budget is left

Figure 6: Framework overview for budgeted entity extraction.

(query, node) combination so that the total gain across all rounds
is maximized with respect to the given budget constraint.

Our proposed framework iteratively solves the aforementioned prob-
lems until the entire budget is used. Figure 6 shows a high-level
diagram of our proposed framework.

3. ESTIMATING THE GAIN OF QUERIES
We now present a novel estimation technique for the return of a

generalized query q(k, l) at a node v ∈ HD . Previous work [31]
has drawn connections between this problem and species estima-
tion literature [6]. However, these techniques are agnostic to any
structure exhibited by the domain under consideration and to the
presence of an exclude-list-based query interface. In particular,
there is no mechanism for estimating the number of new tuples ex-
tracted by a query when restricting the worker answer to not contain
any entities from a certain collection of entities as enforced by an
exclude list. We first review the existing methodology for estimat-
ing the gain of a query, then we discuss how these estimators can be
extended to consider an exclude list, and finally, we present a new
methodology for estimating the gain of generalized queries q(k, l).

3.1 Previous Estimators
Consider a specific node v ∈ HD . Prior work only considers

samples retrieved from the entire population associated with v and
does not consider an exclude list. Let Q be the set of all existing
samples retrieved by issuing queries against v without an exclude
list. These samples can be combined into a single sample of size
n =

∑
q∈Q size(q). Let fi denote the number of entities that ap-

pear i times in this unified sample, and let f0 denote the number of
unseen entities from the population under consideration. Finally,
let C be the population coverage of the unified sample — that is,
this is the fraction of the population covered by the sample.

A new query q(k, 0) at node v can be viewed as increasing the
size of the unified sample by k. Prior work used techniques from
species estimation to estimate the expected number of new entities
returned in q(k, 0). Shen et al. [27], derive an estimator for the
number of new species N̂Shen that would be found in an increased
sample of size k. The approach assumes that the unobserved enti-
ties have equal relative popularity. An estimate of the unique ele-
ments found in an increased sample of size k is given by:

N̂Shen = f0

(
1−

(
1− 1− C

f0

)k)
(1)

At a high-level, the second term of Shen’s formula corresponds to
the probability that at least one unseen entity will be present in a
query asking for k more entities. Thus, multiplying this quantity
with the number of unseen entities f0 corresponds to the expected
number of unseen entities that will be present in the result of a new
query q(k, 0).

Notice, that the quantities f0 and C are unknown and thus need
to be estimated considering the entities in the running unified sam-
ple. The coverage can be estimated by considering the Good-Turing
estimator Ĉ = 1 − f1

n
for the existing retrieved sample. On the

other hand, multiple estimators have been proposed for estimating
the number of unseen entities f0. Trushkowsky et al. [31] proposed
a variation of an estimator introduced by Chao et al. [6] to esti-
mate f0. Nevertheless, the authors argue that the original estimator
proposed by Chao performs similarly with their approach when es-
timating the gain of an additional query q(k, 0).

The estimator by Chao [6] on which the authors build has been
shown to result in considerable bias in cases where the number of
observed entities from a population represents only a small fraction
of the entire population [13]. Notice, that this assumption holds for
crowdsourced entity extraction in a large domain, i.e., we are ob-
serving only a small portion of the entire population. To address
this problem, Hwang and Shen [13] proposed a regression based
technique to estimate f0. This estimator is shown to result in sig-
nificantly smaller bias and empirically outperforms previously pro-
posed estimators, including the one proposed by Chao, when the
ratio of retrieved entities to the entire entity population is small. It
also performs comparably to previous estimators when the ratio is
larger. Notice that the output of this estimator can also be used as a
plug-in quantity in Equation (1).

However, both the aforementioned estimators are agnostic to an
exclude list. Next, we discuss how one can estimate the return of a
query q(k, l) in the presence of an exclude list of size l.

3.2 Queries With an Exclude List
Consider an exclude list of size l. As discussed before an ex-

clude list is a set of entities that correspond to invalid worker an-
swers. Considering an exclude list for a query at a node v ∈ HD
corresponds to limiting our sampling to a restricted subset of the
entity population corresponding to node v. In fact, we want to es-
timate the expected return of a query of size k conditioning on the
fact that the entities in the exclude list will not be retrieved by any
new sample. The latter corresponds to removing these entities from
the population under consideration. Thus, the estimates f̂0 and Ĉ
should be updated before applying Equation (1) to compute the ex-
pected return of a query of size k. This can be done by removing
the entities included in the exclude list from the running sample for
node v, recomputing the entity counts fi and following the tech-
niques presented above for computing the updated estimates for f̂0
and Ĉ. This approach requires that the exclude list is known in
advance. To construct an exclude list one can follow a randomized
approach, where l of the retrieved entities are including in the list
uniformly at random. The generated list can be used to update the
frequency counts fi and estimate the gain of the query. Bootstrap-
ping can also be used to obtain improved estimates.

3.3 Regression Based Gain Estimation
Building upon the approach of Hwang and Shen [13], we in-

troduce a new technique for estimating the gain of a generalized
query q(k, l) directly without using the estimator shown in Equa-
tion (1). Since we want to estimate the gain even for nodes with
a small number of retrieved entities we propose a regression based
technique that is able to capture the structural properties of the ex-
pected gain function as discussed below.

To derive the new estimator we make used of the generalized
jackknife procedure for species richness estimation [11]. Given
two (biased) estimators of S, say Ŝ1 and Ŝ2, let R be the ratio of

their biases:

R =
E(Ŝ1)− S
E(Ŝ2)− S

(2)

By the generalized jackknife procedure, we can completely elimi-
nate the bias resulting from either Ŝ1 or Ŝ2 via

S = G(Ŝ1, Ŝ2) =
Ŝ1 −RŜ2

1−R (3)

provided the ratio of biases R is known. However, R is unknown
and needs to be estimated.

Let Dn denote the number of unique entities in a unified sam-
ple of size n. We consider the following two biased estimators of
S: Ŝ1 = Dn and Ŝ2 =

∑n
j=1Dn−1(j)/n = Dn − f1/n where

Dn−1(j) is the number of species discovered with the jth observa-
tion removed from the original sample. Replacing these estimators
in Equation (3) gives us:

S = Dn +
R

1−R
f1
n

(4)

Similarly, for a sample of increased size n+m we have:

S = Dn+m +
R′

1−R′
f ′1

n+m
(5)

where R′ is the ratio of the biases and f ′1 the number of singleton
entities for the increased sample. Let K = R

1−R and K′ = R′

1−R′ .
Taking the difference of the previous two equations we have:

Dn+m −Dn = K
f1
n
−K′ f ′1

n+m
(6)

Therefore, we have:

new = K
f1
n
−K′ f ′1

n+m
(7)

We need to estimateK,K′ and f ′1. We start with f ′1, which denotes
the number of singleton in the increased sample of size n+m. No-
tice, that f ′1 is not known since we have not obtained the increased
sample yet, so we need to express it in terms of f1, i.e., the number
of singletons, in the running sample of size n. We have:

f ′1 = new + f1 − f1 ∗ Pr[in query of size m] (8)

Following an approach similar to Shen et al. [27], we have that the
probability of a singleton appearing in a query of size m is:

Pr[in query of size m] =

m∑
k=0

(1−(1− 1

f1
)k)

(
m

k

)
(1−p1)kpm−k1

(9)
where p1 denotes the probability that a singleton item in the sample
of size n will be selected in a future query. We estimate this prob-
ability using the corresponding Good-Turing estimator considering
the running sample. We have:

p1 = θ̂(1) =
1

n
2
N2

N1
(10)

where N2 is the number of entities that appear twice in the sample
and N1 is the number of singletons. Eventually we have that:

f ′1 = new + f1(1−
m∑
k=0

(1− (1− 1

f1
)k)

(
m

k

)
(1− p1)kpm−k1)

f ′1 = new + f1(1− P) (11)

Replacing the last equation in Equation (7) we have:

new = K
f1
n
−K′ new + f1(1− P)

n+m

new =
1

(1 + K′
n+m

)
(K

f1
n
−K′ f1(1− P)

n+m
)

Next, we discuss how one can estimate K and K′. To estimate
K we follow the regression approach introduced by Hwang and
Shen [13]. From the Cauchy-Schwarz inequality we have that:

K =

∑S
i=1(1− pi)

n∑S
i=1 pi(1− pi)n−1

≥ (n− 1)f1
2f2

(12)

This can be generalized to:

K =
nf0
f1
≥ (n− 1)f1

2f2
≥ (n− 2)f2

3f3
≥ . . . (13)

Let g(i) = (n−i)fi
(i+1)fi+1

. From the above we have that the function
g(x) is a smooth monotone function for all x ≥ 0. Moreover, let yi
denote a realization of g(i) mixed with a random error. Hwang and
Shen how one can use an exponential regression model to estimate
K. The proposed model corresponds to:

yi = β0 exp(β1i
β2) + εi (14)

where i = 1, . . . , n − 1, β0 > 0, β1 < 0, β2 > 0 and εi denotes
random errors. It follows that K = β0.

Finally, we show how one can estimate the value ofK′ for an in-
creased sample of size n + m. First, we show that K increases
monotonically as the size of the running sample increases. Let

K(n) =
∑S

i=1(1−pi)
n∑S

i=1 pi(1−pi)
n−1 be a function returning the value of

K for a sample of size n. We have the following lemma.

LEMMA 1. We have K(n+m) ≥ K(n), ∀n,m > 0.
PROOF. In the remainder of the proof we will denoteK(n+m)

as K′. By definition we have that K =
∑S

i=1(1−pi)
n∑S

i=1 pi(1−pi)
n−1 and

K′ =
∑S

i=1(1−pi)
n+m∑S

i=1 pi(1−pi)
n+m−1 . We want to show that:

∑S
i=1(1− pi)n+m∑S

i=1 pi(1− pi)n+m−1
≥

∑S
i=1(1− pi)n∑S

i=1 pi(1− pi)n−1

S∑
i=1

(1− pi)n+m
S∑
j=1

pj(1− pj)n−1 ≥
S∑
i=1

pi(1− pi)n+m−1
S∑
j=1

(1− pj)n

∑
i,j:i≺j

[(1− pi)n+mpj(1− pj)n−1 − pi(1− pi)n+m−1(1− pj)n+

+ (1− pj)n+mpi(1− pi)n−1 − pj(1− pj)n+m−1(1− pi)n] ≥ 0∑
i,j:i≺j

[(1− pi)n−1(1− pj)n−1(pj − pi)((1− pi)m − (1− pj)m) ≥ 0

(15)

But the last inequality always holds since each term of the sum-
mation is positive. In particular, if pj ≥ pi then also 1−pi ≥ 1−pj
and if pj ≤ pi then 1− pi ≤ 1− pj .

We have that K(n) is an increasing function of the sample size.
Moreover,K(n) has a decreasing slope. We modelK as a general-
ized logistic function of the form f(x) = A

1+exp(−G(x−D))
. As we

observe samples of different sizes for different queries we estimate
K as described above and therefore we observe different realiza-
tions of f(·). Thus, we can learn the parameters of f and use it to
estimate K′. In the presence of an exclude list of size l we follow
the approach described in Section 3.2 to update the quantities fi
used in the analysis above.

3.4 Negative Answers and Gain Estimation
Next, we study the effect of negative answers on estimating the

gain of future queries. It is possible to issue a query at a specific
node v ∈ HD and receive no entities, i.e., we receive a negative
answer. This is an indication that the underlying entity population
of v is empty. In such a scenario, we assign the expected gain of
future queries at v and all its descendants to zero.

Another type of negative answer corresponds to the scenario
where we issue a query at an ancestor node u of v and receive no
entities associated with v but received some entities for u. Notice,
that in this case, we do not have enough information to update our
estimates for node u. The reason is that due to the restricted query
size entities from other descendants of umay be more popular with
respect to the popularity distribution of u.

4. DISCOVERING QUERYING POLICIES
In this section, we focus on the second component of our pro-

posed algorithmic framework. Specifically, we introduce a query-
ing strategy based on a multi-round adaptive optimization algo-
rithm to maximize the total gain across all rounds under the given
budget constraints. The algorithmic framework we propose builds
upon ideas from the multi-armed bandit literature [4, 8]. In par-
ticular, at each round, the proposed algorithm uses as input the
estimated gain or return for queries q(k, l) at the different nodes
in HD . Before presenting our proposed algorithm we list several
challenges associated with this adaptive optimization problem.
• The first challenge is that the number of nodes in HD is ex-

ponential with respect to the number of attributes AD describ-
ing the domain of interest. Querying every possible node to
estimate its expected return for different queries q(k, l) is pro-
hibitively expensive. That said, typical budgets do not allow al-
gorithms to query all nodes in the hierarchy, so this intractabil-
ity may not hurt us all that much. For example, we can keep
estimates for each of the nodes for which at least one entity has
been retrieved.
• The second challenge is balancing the tradeoff between exploita-

tion and exploration [4]. The first refers to querying nodes for
which sufficient entities have been retrieved and hence we have
an accurate estimate for their expected return; the latter refers
to exploring new nodes inHD to avoid locally optimal policies.

4.1 Balancing Exploration and Exploitation
While issuing different queries q(k, l) at different nodes of HD

we obtain a collection of entities that can be assigned to different
nodes in HD . For each node we can estimate the return of a new
query q(k, l) using the estimator presented in Section 3.3. How-
ever, this estimate is based on a rather small sample of the under-
lying population. Thus, exploiting this information at every round
may need to suboptimal decision. This is the reason why one needs
to balance the trade-off between exploiting nodes for which the es-
timated return is high and nodes that haven’t been queried many
times. Formally, the latter corresponds to upper-bounding the ex-
pected return of each potential action with a confidence interval that
depends on both the variance of the expected return and the number
of times an action is evaluated.

Let r(α) denote the expected return of action α that is an esti-
mate of the true return r∗(α). Moreover, let σ(α) be an error com-
ponent on the return of action α chosen such that r(α) − σ(α) ≤
r∗(α) ≤ r(α) + σ(α) with high probability. The parameter σ(α)
should take into account both the empirical variance of the expected
return as well as our uncertainty if an action or similar actions (e.g.,
with different k, l but at the same node) has been chosen few times.

Let nα,t be the number of times we have chosen action α by round
t, and let vα,t denote the maximum value between some constant c
(e.g., c = 0.01) and the empirical variance for action α at round t.
The latter can be computed using bootstrapping over the retrieved
sample and applying the estimators presented in Section 3.3 over
these bootstrapped samples. Several techniques have been pro-
posed in the multi-armed bandits literature to compute the param-
eter σ(α) [30]. Teytaud et al. [30] showed that techniques consid-
ering both the variance and the number of times an action has been
chosen tend to outperform other proposed methods. Based on this
observation, we choose to use the following formula for sigma:

σ(α) =

√
vα,t · log(t)

nα,t
(16)

4.2 A Multi-Round Querying Policy Algorithm
We now introduce our proposed multi-round algorithm for solv-

ing the budgeted entity enumeration problem. At a high-level, our
algorithm proceeds as follows: Let S denote the set of all poten-
tial queries q(k, l) that can be issued at the different nodes of HD
during a round r. Moreover, let r(α)+σ(α) and c(α) be the upper-
bounded return (i.e., gain) and cost for an action α ∈ S. At each
round the algorithm identifies an action in S that maximizes the
quantity r(α)+σ(α)

c(α)
under the constraint that the cost of action α

is less or equal to the remaining budget. Since we are operating
under a specified budget one can view the problem in hand as a
variation of the typical knapsack problem. If no such action exists
then the algorithm terminates. Otherwise the algorithm issues the
query corresponding to action α, updates the set of unique entities
obtained from the queries, the remaining budget and updates the set
of potential queries q(k, l) that can be executed in the next round.
An overview of the proposed algorithm is shown in Algorithm 1.

As discussed before, the size ofHD is exponential to the values
of attributes describing it, and thus, considering all the possible
queries corresponding to the different nodes of the hierarchy can
be prohibitively expensive. Next, we discuss how one can initialize
and update the set of potential actions as the algorithm progresses
considering the structure of the posetHD and the retrieved entities
from previous rounds.

Algorithm 1 Overall Algorithm

1: Input: HD : the hierarchy describing the entity domain; r, σ: value
oracle access to gain upper bound; c: value oracle access to the query
costs; βc: query budget;

2: Output: E : a set of extracted distinct entities;
3: E ← {}
4: RB ← βc /* Initialize remaining budget */
5: S ← UpdateActionSet(HD)
6: while RB > 0 and S 6= {} do
7: α← argmaxα∈S

r(α)+σ(α)
c(α)

such that RB − c(α) > 0

8: if α is NULL then
9: break;

10: RB ← RB − c(α) /* Update budget */
11: Issue query corresponding to α
12: E ← entities from query
13: E ← E ∪ E /* Update unique entities */
14: S ← UpdateActionSet(HD)
15: return E

4.3 Updating the Set of Actions
Due to the exponential size of the poset HD , we need to limit

the set of possible actions Algorithm 1 considers. To avoid keeping
estimates for actions with bad returns we exploit the structure the

given domainHD . We propose an algorithm that updates the set of
actions by traversing the input poset in a top-down manner extend-
ing it by adding new actions that corresponds to queries for nodes
that are direct descendants of already queried nodes.

The intuition behind this approach is the following. It is easy
to see that due to the hierarchical structure of the poset nodes at
higher levels of the poset corresponds to larger populations of enti-
ties. Therefore, issuing queries at these nodes can potentially result
to a larger number of extracted entities. Also, traversing the poset
in a bottom-down fashion allows one to detect sparsely populated
areas of the poset and hence avoid spending any of the available
budget on issuing queries corresponding to them.

In more detail, our approach for updating the set of available
actions (Algorithm 2) proceeds as follows: If the set of available
actions is empty start by considering all possible queries that can
be issued at the root of HD (Ln. 4-5). The set of possible queries
corresponds to queries q(k, l) for all combinations of the values
of parameters k and l. Recall that these are pre-specified by the
designer of the querying interface. If the set of available actions is
not empty, we consider the node associated with the action selected
in the last round and populate the set of available actions with all
the queries corresponding to its direct descendants (Ln. 7-9). As
mentioned above the number of nodes in HD can be prohibitively
large, therefore we also remove any bad actions from the running
set of actions (Ln. 10-14). An action α is bad when r(α)+σ(α) <
maxα′∈S(r(α

′) − σ(α′)). Intuitively, this inequality states that
we do not need to consider again an action as long as there exists
another action such that the upper-bounded return of the former is
lower than the lower bounded return of the latter. This is a standard
technique adopted in multi-armed bandits to limit the number of
actions considered by the algorithm [8].

Algorithm 2 UpdateActionSet

1: Input: HD : the hierarchy describing the entity domain; u: a node in
HD associated with the last selected action; Sold: the running set of
actions; Vk: set of values for query parameter k; Vl: set of values for
query parameter l;

2: Output: Snew: the updated set of actions;
3: /* Extend Set of Actions*/
4: if Sold is empty then
5: return {Root ofHD}
6: Snew ← Sold
7: for all d ∈ Set of Direct Descendant Nodes of u do
8: Ad ← Set of queries at u for all configurations in Vk × Vl
9: Snew ← Snew ∪Ad

10: /* Remove Bad Actions*/
11: /* Find maximum lower bound on gain over all actions in Snew*/
12: thres← maxα′∈Snew

(r(α′)− σ(α′))
13: B ← All actions a in Snew with r(α) + σ(α) < thres
14: Snew ← Snew \ B
15: return Snew

5. EXPERIMENTAL EVALUATION
In this section we present an empirical evaluation of our pro-

posed algorithmic framework. The main questions we seek to ad-
dress are: (1) how the proposed querying policy algorithm com-
pares against baselines for maximizing the number of extracted en-
tities under a specific budget, (2) how the different gain estimators
presented in Section 3 compare with each other, and (3) how the
proposed querying policy algorithm exploits the structure of the in-
put domain to construct the set of available actions.

We empirically study these questions using both real and syn-
thetic datasets. First, we discuss the experimental methodology,
and then we describe the data and results that demonstrate the ef-
fectiveness of our framework on crowdsourced entity extraction.

The evaluation is performed on an Intel(R) Cored(TM) i7 3.7 GHz
32GB machine; all algorithms are implemented in Python 2.7.

Gain Estimators: We evaluate the following gain estimators:
• Chao92Shen: This estimator combines the methodology pro-

posed by Chao [6] for estimating the number of unseen species
with Shen’s formula, i.e., Equation (1). This estimator was also
used by Trushkowsky et al. [31].
• HwangShen: This estimator combines the regression based ap-

proach proposed by Hwang and Shen [13] for estimating the
number of unseen species with Shen’s formula.
• NewRegr: This estimator corresponds to the new regression

based technique proposed in Section 3.3.
All estimators were coupled with bootstrapping to estimate their
variance to retrieve an upper bound on the return of a query as
shown in Equation (16).

Entity Extraction Algorithms: We evaluate the following algo-
rithms for crowdsourced entity extraction:
• Rand: This algorithm executes random queries until all the

available budget is used. It selects a random node from the
input posetHD and a random query configuration q(k, l) from
a list of pre-specified k, l value combinations. We expect Rand
to be effective for extracting entities in small and dense data
domains that do not have many sparsely populated nodes.
• RandL: This algorithm executes random queries only at the

lowest level nodes (i.e., leaf nodes) of the input posetHD until
all the available budget is used. It selects a random leaf node
and a random query configuration q(k, l) from a list of pre-
specified k, l value combinations. We expect RandL to be effec-
tive for shallow data domains when the majority of nodes cor-
responds to leaf nodes. And similar to Rand, the performance
of RandL is expected to be reasonable for small and dense data
domains without sparsely populated nodes.
• BFS: This algorithm performs a breadth-first traversal of the

input poset HD , executing one query at each node. The query
configuration is randomly selected from a list of pre-specified
k, l value combinations. This algorithm promotes exploration
of the action space when extracting entities. It also takes into
account the structure of the input domain but is agnostic to
sparsely populated nodes of the inputHD .
• GSChao, GSHWang, GSNewR: These algorithms correspond

to our proposed querying policy algorithm (Section 4.2) cou-
pled with Chao92Shen, HwangShen and NewRegr respectively.
• GSExact: This algorithm is used as a near-optimal, omniscient

baseline that allows us to see how far off our algorithms are
from an algorithm with perfect information. In particular, we
combine the algorithm proposed in Section 4.2 with an ex-
act computation of the return or gains from queries. More
precisely, the algorithm proceeds as follows: At each round
we speculatively execute each of the available actions (i.e., all
query configurations across all nodes) and select the one that
results in the largest number of return to cost ratio. Since the
return of each query is known, the algorithm is not coupled with
any of the aforementioned estimators.

Rand, RandL and BFS promote the exploration of the action
space when extracting entities, while the other algorithms balance
exploration with exploitation. For the results reported below, we
run each algorithm ten times and report the average gain achieved
under the given budget.

Querying Interface: For all datasets we consider generalized queries

q(k, l) of the type “Give me k more entities that satisfy certain con-
ditions and are not present in an exclude list of size l”. The condi-
tions correspond to matching the attribute values associated with a
node from the input poset. The configurations considered for (k, l)
are {(5, 0), (10, 0), (20, 0), (5, 2), (10, 5), (20, 5), (20, 10)}. Larger
values of k or lwere deemed unreasonable for crowdsourced queries.
The gain of a query is computed as the number of new entities
extracted. The cost of each query is computed using an additive
model comprised by three partial cost terms that depend on the
characteristics of the query.

The three partial cost terms are: (i) CostK that depends on the
number of responses k requested from a user, (ii) CostL that de-
pends on the size of the exclude list l used in the query, and (iii)
CostSpec that depends on the specificity of the query qs, e.g., we
assume that queries that require users to provide more specialized
entities such as a “Give me one concert for New York on the 17th
of Nov” cost more than more generic queries such as “Give me one
concert in New York”. More formally, we define the specificity of a
query to be equal to the number on attributes assigned non-wildcard
values for the node u ∈ HD the query corresponds to.

For each of the cost terms we assume a maximum cost of $1
realized by considering the maximum value of the corresponding
input variable. The overall cost for a query q(k, l) with specificity
s is computed as:

Cost(q) = α·
k

max. query size
+β·

l

max. ex. list size
+γ·

s

max. specificity

The cost of a query should be significantly increased when an
exclude list is used, thus we require that β is set to a larger value
than α and γ. For the results reported below, we set α = γ = 1
and β = 5. Similar results were observed for other settings but are
omitted due to space limitations.

5.1 Synthetic Data Experiments
First, we evaluate the proposed framework on extracting entities

from a large domain. We consider the event dataset collected from
Eventbrite. As described in Section 1, the poset corresponding to
the Eventbrite domain contains 8,508,160 nodes with 57,805 dis-
tinct events overall. However, only 175,068 nodes are populated
leading to an rather sparsely populated domain. Due to lack of
popularity proxies for the extracted events, we assigned a random
popularity value in (0, 10] to each event. These weights are used
during sampling to form the actual popularity distribution charac-
terizing the population of each node in the poset.
Results: We evaluate the performance, in terms of number of en-
tities extracted, for the different extraction algorithms described
above, across a range of different budgets. We run each algorithm
ten times and report the average number of unique events extracted
as well as the corresponding standard error. The results are shown
in Figure 7. As can be seen, all of our proposed algorithms, i.e.,
GSChao, GSHwang, GSNewR outperform the baselines under con-
sideration exhibiting an improvement of at least 2X on the total
number of unique events extracted. For example, for budget = $50,
our schemes all extracted greater than 500 events while Rand and
RandL extracted 1.1 and 0.2 events and BFS extracted 207.7 events,
an improvement of over 140%. Moreover, for smaller budgets we
observe that these algorithms perform comparably to GSExact that
has “perfect information” to the gain of each query, typically giv-
ing half the number of entities that GSExact extracts. Note that our
estimators have access to few samples and sparse information; the
fact that we are able to get this close to GSExact is notable.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 10 20 50 80 100

E
x
tr

a
c
te

d
 E

v
e

n
ts

Budget

Extraction Performance for Eventbrite

Rand
RandL

BFS

GSChao
GSHwang
GSNewR

GSExact

Figure 7: The number of events extracted by different algorithms for the
Eventbrite data domain and different budgets.

Table 1: Average absolute relative error for estimating the gain of different
queries for Eventbrite.

Q. Size k EL. Size l Chao92Shen HwangShen NewRegr
5 0 0.470 0.500 0.427
5 2 0.554 0.612 0.567
10 0 0.569 0.592 0.544
10 5 0.580 0.696 0.559
20 0 0.642 0.756 0.601
20 5 0.510 0.60 0.519
20 10 0.653 0.756 0.631

The poor performance of Rand and RandL is due to the sparsity
of the Eventbrite data domain. Regarding BFS, we see that it ex-
hibits better performance than Rand and RandL by exploiting the
structure of the underlying domain. However, since BFS is agnos-
tic to the cost of the issued queries as well as to sparsely populated
areas of the underlying poset, it can only extract a limited number
of events. On the other hand, our proposed techniques were able to
extract significantly more tuples as they both exploit the structure
of the poset and optimize for the cost of the issued queries. Fi-
nally, we point out that GSNewR that combines the proposed poset
traversal algorithm with our new regression-based gain estimator
was able to outperform GSChao and GSHwang.

To further understand the relative performance of GSChao, GSH-
wang and GSNewR, we evaluate the performance of the gain esti-
mators described above at predicting the number of new retrieved
events for different query configurations. We choose ten random
nodes from Eventbrite each containing more than 5,000 events. For
each of the nodes and each of the available query parameter con-
figurations (k, l), we execute ten queries of the form “Give me k
items from node u ∈ HD that are not included in an exclude list of
size l”. As mentioned in Section 3.2 the exclude list for each query
is constructed following a randomized approach.

We measure the performance of each estimator by considering
the absolute relative error between the predicted return and the ac-
tual return of the query. In Table 1, we report the relative error for
each of the three estimators averaged over all points under con-
sideration. As shown, all three estimators perform equivalently
with the new regression based technique slightly outperforming
Chao92Shen and HwangShen for certain types of queries. For ex-
ample, for k = 10, l = 5, Chao92Shen has a relative error of 0.58,
HwangShen had a relative error of 0.7, and NewRegr had a relative
error of 0.56. We attribute the improved extraction performance of
GSNewR to these improved estimates. The relatively large values
for relative errors are justified as the retrieved samples correspond
to a very small portion of the underlying population for each of the
points. This is a well-known behavior for non-parametric estima-
tors and studied extensively in the species estimation literature [13].

Table 2: The population characteristics for the People’s data.

Person Type People
Industry People 743

Athletes 743
Politicians 748

Actors/Singers 744

News Portal People
WSJ 594

WashPost 597
NY Times 595
HuffPost 599

USA Today 593

5.2 Real Data Experiments
Since the performance of the baseline algorithms is significantly

affected by the sparsity of the Eventbrite data domain, we choose to
further evaluate the performance of the extraction algorithms for a
more dense domain, that we constructed ourselves. We used Ama-
zon’s Mechanical Turk [1] to collect a real-world dataset, targeted
at extracting “people in the news”.

We asked workers to extract the names of people belonging to
four different types from five different news portals. The people
types we considered are “Politicians”, “Athletes”, “Actors/Singers”
and “Industry People”. The news portals we considered are “New
York Times”, “Huffington Post”, “Washington Post”, “USA To-
day” and “The Wall Street Journal”. This data domain, referred
to as the People’s domain, is essentially characterized by the type
of the individual and the news portal. Workers were paid $0.20 per
HIT. We issued 20 HITS for each leaf node of the domain’s poset,
resulting in 600 HITS in total. After manually curating name mis-
spelling’s, we extracted 1,245 unique people in total. Table 2 shows
the number of distinct entities for the different values of the people-
type and news portal attributes. Finally, the popularity value of each
extracted entity was assigned to be equal to the number of times it
appeared in the extraction result. The values are normalized during
sampling time to form a proper popularity distribution. Collect-
ing a large amount of data in advance from Mechanical Turk and
then simulating the responses of human workers by revealing por-
tions of this dataset allows us to compare different algorithms on
an equal footing; this approach is often adopted in the evaluation of
crowdsourcing algorithms [22, 19, 31].

Results: We first evaluate the performance of the different extrac-
tion algorithms. Similarly to Eventbrite we run each algorithm ten
times and report the average performance. The results are shown in
Figure 8. As shown our proposed techniques (i.e., GSChao, GSH-
wang and GSNewR) still outperform Rand, RandL and BFS. How-
ever, we see that the performance improvement compared to the
baselines is smaller compared to Eventbrite. The reason is that the
input domain is dense and all nodes of the input poset are pop-
ulated, so even random techniques may “get lucky” fairly often.
Even so, the number of nodes extracted by all our proposed tech-
niques is typically 100% greater than that of the other techniques
for small budgets and 54% for larger ones.

 0

 200

 400

 600

 0 10 20 50 80 100

E
x
tr

a
c
te

d
 P

e
o
p
le

Budget

Extraction Performance for People Data

Rand
RandL

BFS

GSChao
GSHwang
GSNewR

GSExact

Figure 8: The number of people extracted by different algorithms for the
People data domain and different budgets.

We also observe that issuing random extraction queries at the

nodes of the poset outperforms BFS for a significant margin as
the available budget increases. This behavior is expected in dense
small domains where all the available nodes are populated. No-
tice that this approach corresponds to a querying policy that fo-
cuses purely on exploring different queries. However, exploiting
previously obtained information and balancing exploration and ex-
ploitation of the possible actions (i.e., following the proposed poset
traversal algorithm) leads to superior performance. We further no-
tice that GSChao does better than GSNewR in this case, unlike the
previous case. This is because the Chao92Shen estimator performs
better when the retrieved samples correspond to a larger portion of
the underlying population (i.e., when operating under a large bud-
get), as we see below.

Next, we evaluate the performance of the gain estimators. As
before, we issue ten queries to different nodes of the input poset for
all available query configurations. Since the input poset is small,
we issued ten queries over all nodes. For each gain estimator and
query configuration, we computed the average relative error, com-
paring the estimated query return with the actual query return. The
results are shown in Table 3. Again, we observe that for smaller
query sizes the regression technique proposed in this paper offers
better gain estimates. However, as the query size increases, and
hence, a larger portion of the underlying population is observed
Chao92Shen outperforms both regression based techniques. Thus,
we are able to explain the performance difference between GSChao
and the other two algorithms.

Table 3: Average absolute percentage error for estimating the gain of dif-
ferent queries for the People’s data domain.

Q. Size k EL. Size l Chao92Shen HwangShen NewRegr
5 0 0.295 0.299 0.228
5 2 0.163 0.156 0.144
10 0 0.306 0.305 0.277
10 5 0.341 0.349 0.293
20 0 0.359 0.371 0.467
20 5 0.402 0.418 0.493
20 10 0.405 0.428 0.638

We next explore how our different algorithms traverse the poset,
and how they use different query configurations. The results re-
ported are averaged over ten runs. We begin by considering how
many queries these algorithms issue at various levels of the poset.
In Figure 9, we plot the different number of queries issued at vari-
ous levels by our algorithms when the budget is set to 10 and 100
respectively. Given a small budget, we observe that all algorithms
prefer issuing queries at higher levels of the poset. Notice that inner
nodes of the poset are preferred and only a small number of queries
is issued at the root (i.e., level one) of the poset. This behavior
is justified if we consider that due to their popularity, certain enti-
ties are repeatedly extracted, thus leading to a lower gain. As the
budget increases, we see that all algorithms tend to consider more
specialized queries at deeper levels of the poset. It is interesting to
observe that all of our algorithms issue the majority of their queries
at the level two nodes, while GSExact, which has perfect infor-
mation, focuses mostly on the leaf nodes. Thus, in this case, our
techniques could benefit from being more aggressive at traversing
the poset and reaching deeper levels; overall, our techniques may
end up being more conservative in order to cater to a larger space
of posets and popularity distributions. In Figure 10, we plot the
different query configurations chosen by our algorithms when the
budget is set to 10 and 100 respectively. We observe that GSEx-
act always prefers queries with k = 20 and l = 0 for both small
and large budgets. On the other hand, our algorithms issue more
queries of smaller size when operating under a limited budget and
prefer queries of larger size for larger budgets. Out of all algo-

rithms we see that GSNewR was the only one issuing queries with
exclude lists of different sizes, thus exploiting the rich diversity of
query interfaces. However, the number of such queries is limited.

 0

 5

 10

 15

 20

GSChao GSHwang GSNewR GSExact

N
u

m
b

e
r

o
f

In
v
o

c
a

ti
o

n
s

Lv.1
Lv.2
Lv.3

 0

 20

 40

 60

 80

 100

GSChao GSHwang GSNewR GSExact

N
u

m
b

e
r

o
f

In
v
o

c
a

ti
o

n
s

Lv.1
Lv.2
Lv.3

Figure 9: The number of queries issued at different levels used when budget
is set at 10 or 100.

 0

 5

 10

 15

 20

GSChao GSHwang GSNewR GSExact

N
u

m
b

e
r

o
f

In
v
o

c
a

ti
o

n
s

(5,0)
(5,2)

(10,0)
(10,5)
(20,0)
(20,5)

(20,10)

 0

 20

 40

 60

 80

 100

GSChao GSHwang GSNewR GSExact

N
u

m
b

e
r

o
f

In
v
o

c
a

ti
o

n
s

(5,0)
(5,2)

(10,0)
(10,5)
(20,0)
(20,5)

(20,10)

Figure 10: The different query configurations used when budget is set at 10
or 100.

5.3 Take-Away Points
We have the following recommendations based our results:
• Exploiting the structure of the input domain is effective for

maximizing the total number of extracted entities. Also, bal-
ancing the exploration of queries for non-observed nodes of the
poset with queries over observed nodes of the poset is crucial.
• For sparse domains, e.g.., domain specified by large posets with

a small number of populated nodes, one should resort to regres-
sion based techniques for estimating the expected gain of fur-
ther queries as they result in better performance. However, for
dense domains the Chao92Shen estimator results in better per-
formance as a larger portion of the underlying population can
be sampled. The size of the input domain and its sparsity are
known in advance to the designer of the querying interface.
• For small budgets the proposed estimator-based poset traver-

sal algorithms (i.e., GSChao, GSHwang and GSNewR) exhibit
comparable performance with a traversal algorithm that has or-
acle access to the gain of each query to be issued. For larger
budgets we observe that our algorithms are at most 2.2x away
from this adaptive querying strategy with perfect information.

6. RELATED WORK
The prior work related to the techniques proposed in this paper

can be placed in a few categories; we describe each of them in turn:
Crowd Algorithms: There has been a significant amount of work
on designing algorithms where the unit operations (e.g., compar-
isons, predicate evaluations, and so on) are performed by human
workers, including common database primitives such as filter [21],
join [18] and max [10], machine learning primitives such as en-
tity resolution [5, 33] and clustering [25], as well as data mining
primitives [3, 29].

Previous work on the task of crowdsourced extraction or enumer-
ation, i.e., populating a database with entities using the crowd [24,
31] is the most related to ours. In both cases, the focus is on a
single entity extraction query; extracting entities from large and
diverse data domains is not considered. Moreover, the proposed
techniques do not support dynamic adaptation of the queries issued
against the crowd to optimize for a specified monetary budget.

Knowledge Acquisition Systems: Recent work has also consid-
ered the problem of using crowdsourcing within knowledge acqui-
sition systems [15, 17, 34]. This line of work suggests using the
crowd for curating knowledge bases (e.g., assessing the validity of
the extracted facts) and for gathering additional information to be
added to the knowledge base (e.g., missing attributes of an entity
or relationships between entities), instead of augmenting the set of
entities themselves. As a result, these papers are solving an orthog-
onal problem. The techniques described in this paper for estimat-
ing the amount of information from a query and devising querying
strategies to maximize the amount of extracted information will
surely be beneficial for knowledge extraction systems as well.
Deep Web Crawling: A different line of work has focused on data
extraction from the deep web [16, 28]. In such scenarios, data is ob-
tained by querying a form-based interface over a hidden database
and extracting results from the resulting dynamically-generated an-
swer (often a list of entities). Typically, such interfaces provide
partial list of matching entities to issued queries; the list is usually
limited to the top-k tuples based on an unknown ranking function.
Sheng et al. [28] provide near-optimal algorithms that exploit the
exposed structure of the underlying domain to extract all the tuples
present in the hidden database under consideration. Our work is
similar to this work in that our goal is to also extract entities via
a collection of interfaces (in our case the interfaces correspond to
queries asked to the crowd).

The main difference between this line of work and ours is that an-
swers from a hidden database are deterministic, i.e., a query in their
setting will always retrieve the same top-k tuples. This assumption
does not hold in the crowdsourcing scenario considered in this pa-
per and thus the proposed techniques are not applicable. In their
setting, it suffices to ask each query precisely once. In our setting,
since crowdsourced entity extraction queries can be viewed as ran-
dom samples from an unknown distribution, one needs to make use
of the query result estimation techniques introduced in Section 3.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we studied the problem of crowdsourced entity ex-

traction over large and diverse data domains. We introduced a novel
crowdsourced entity extraction framework that combines statistical
techniques with an adaptive optimization algorithm to maximize
the total number of unique entities extracted. We proposed a new
regression-based technique for estimating the gain of further query-
ing when the number of retrieved entities is small with respect to
the total size of the underlying population. We also introduced a
new algorithm that exploits the often known structure of the un-
derlying data domain to devise adaptive querying strategies. Our
experimental results show that our techniques extract up to 3.3X
more entities compared to a collection of baselines, and are at most
2.2X away from an omniscient adaptive querying strategy with per-
fect information.

Some of the future directions for extending this work include rea-
soning about the quality and correctness of the extracted result as
well as extending the proposed techniques to other types of infor-
mation extraction tasks. As mentioned before, the techniques pro-
posed in this paper do not deal with incomplete and imprecise infor-
mation. However, there has been an increasing amount of literature
on addressing these quality issues in crowdsourcing [7, 14, 20, 32].
Combining these techniques, or entity resolution techniques [33]
that reason about similarity of extracted entities, with our proposed
framework is a promising future direction. Finally, it is of particular
interest to consider how the proposed framework can be applied to
other budget sensitive information extraction applications includ-
ing discovering valuable data sources for integration tasks [26] or
curating and completing a knowledge base [17].

8. REFERENCES
[1] Mechanical Turk. http://mturk.com.
[2] Y. Amsterdamer, S. B. Davidson, T. Milo, S. Novgorodov, and A. Somech.

OASSIS: query driven crowd mining. SIGMOD, pages 589–600, 2014.
[3] Y. Amsterdamer, Y. Grossman, T. Milo, and P. Senellart. Crowd mining.

SIGMOD, pages 241–252, 2013.
[4] P. Auer. Using confidence bounds for exploitation-exploration trade-offs.

JMLR, 3:397–422, 2003.
[5] K. Bellare, S. Iyengar, A. Parameswaran, and V. Rastogi. Active sampling for

entity matching. In KDD, 2012.
[6] A. Chao and S. M. Lee. Estimating the Number of Classes via Sample

Coverage. Journal of the American Statistical Association, 87(417):210–217,
1992.

[7] O. Dekel and O. Shamir. Vox populi: Collecting high-quality labels from a
crowd. In COLT, 2009.

[8] E. Even-Dar, S. Mannor, and Y. Mansour. Action elimination and stopping
conditions for the multi-armed bandit and reinforcement learning problems.
JMLR, 7:1079–1105, 2006.

[9] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin. Crowddb:
Answering queries with crowdsourcing. SIGMOD, pages 61–72, 2011.

[10] S. Guo, A. Parameswaran, and H. Garcia-Molina. So Who Won? Dynamic Max
Discovery with the Crowd. In SIGMOD, 2012.

[11] J. F. Heltshe and N. E. Forrester. Estimating species richness using the jackknife
procedure. Biometrics, pages 1–11, 1983.

[12] J. Hortal, P. A. Borges, and C. Gaspar. Evaluating the performance of species
richness estimators: sensitivity to sample grain size. Journal of Animal Ecology,
75(1):274–287, 2006.

[13] W.-H. Hwang and T.-J. Shen. Small-sample estimation of species richness
applied to forest communities. Biometrics, 66(4):1052–1060, 2010.

[14] P. G. Ipeirotis, F. Provost, and J. Wang. Quality management on amazon
mechanical turk. In HCOMP ’10, 2010.

[15] L. Jiang, Y. Wang, J. Hoffart, and G. Weikum. Crowdsourced entity markup. In
CrowdSem.

[16] X. Jin, N. Zhang, and G. Das. Attribute domain discovery for hidden web
databases. SIGMOD, pages 553–564, 2011.

[17] S. K. Kondredi, P. Triantafillou, and G. Weikum. Combining information
extraction and human computing for crowdsourced knowledge acquisition. In
30th IEEE International Conference on Data Engineering, ICDE ’14, 2014.

[18] A. Marcus, E. Wu, D. Karger, S. Madden, and R. Miller. Human-powered sorts
and joins. In VLDB, 2012.

[19] A. Marcus, E. Wu, S. Madden, and R. C. Miller. Crowdsourced databases:
Query processing with people. pages 211–214. CIDR, 2011.

[20] B. Nushi, A. Singla, A. Gruenheid, A. Krause, and D. Kossmann. Quality
assurance and crowd access optimization: Why does diversity matter? In ICML
Workshop on Crowdsourcing and Human Computation, 2014.

[21] A. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis, A. Ramesh, and
J. Widom. Crowdscreen: Algorithms for filtering data with humans. In
SIGMOD, 2012.

[22] A. G. Parameswaran, S. Boyd, H. Garcia-Molina, A. Gupta, N. Polyzotis, and
J. Widom. Optimal crowd-powered rating and filtering algorithms. PVLDB,
7(9):685–696, 2014.

[23] A. G. Parameswaran, H. Park, H. Garcia-Molina, N. Polyzotis, and J. Widom.
Deco: Declarative crowdsourcing. CIKM, pages 1203–1212, 2012.

[24] H. Park and J. Widom. Crowdfill: A system for collecting structured data from
the crowd. In 23rd International World Wide Web Conference (WWW), 2014.

[25] R. Gomes et al. Crowdclustering. In NIPS, 2011.
[26] T. Rekatsinas, X. L. Dong, L. Getoor, and D. Srivastava. Finding Quality in

Quantity: The Challenge of Discovering Valuable Sources for Integration.
CIDR, 2015.

[27] T. Shen, A. Chao, and C. Lin. Predicting the number of new species in further
taxonomic sampling. Ecology, 84(3), 2003.

[28] C. Sheng, N. Zhang, Y. Tao, and X. Jin. Optimal algorithms for crawling a
hidden database in the web. PVLDB, 5(11):1112–1123, July 2012.

[29] V. S. Sheng, F. Provost, and P. Ipeirotis. Get another label? improving data
quality and data mining using multiple, noisy labelers. In SIGKDD, 2008.

[30] O. Teytaud, S. Gelly, and M. Sebag. Anytime many-armed bandits. In CAP07,
2007.

[31] B. Trushkowsky, T. Kraska, M. J. Franklin, and P. Sarkar. Crowdsourced
enumeration queries. ICDE, pages 673–684, 2013.

[32] V. C. Raykar et al. Supervised learning from multiple experts: whom to trust
when everyone lies a bit. In ICML, page 112, 2009.

[33] J. Wang, T. Kraska, M. Franklin, and J. Feng. Crowder: Crowdsourcing entity
resolution. In VLDB, 2012.

[34] R. West, E. Gabrilovich, K. Murphy, S. Sun, R. Gupta, and D. Lin. Knowledge
base completion via search-based question answering. WWW, pages 515–526,
2014.

