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ABSTRACT
Data exploration and analysis, especially for non-programmers, re-
mains a tedious and frustrating process of trial-and-error. We demon-
strate zenvisage, an interactive data exploration system tailored
towards “fast-forwarding” to desired trends, patterns, or insights,
without much effort from the user. zenvisage supports simple drag-
and-drop and sketch-based interactions as specification mechanisms
for the exploration need, as well as an intuitive data exploration
language called ZQL for more complex needs. zenvisage is being
developed in collaboration with ad analysts, battery scientists, and
genomic data analysts, and will be demonstrated on their datasets.

1. INTRODUCTION
We are in the cusp of a data-enabled era, with virtually every sec-

tor of society—spanning business, government, science, medicine,
and defense—having access to large volumes of data, and a press-
ing need for analyzing and extracting insights from it. Unfortu-
nately, the domain experts in these sectors analyzing the data do
not typically possess extensive programming experience [18]. As a
result, these experts primarily rely on interactive visualization tools
like Tableau [5] or Microsoft Excel. These commercial tools make
it easy for such individuals to interactively specify a visualization
of interest from a preset set of styles, and the tools generate and
display the desired visualization.

However, these tools, while immensely popular and broadening
the reach of data analysis—Excel has a user base in the billions [4],
while Tableau is a publicly traded company with valuation in the
billions [6]—still leave a lot to be desired. Specifically, these tools
have little by way of guiding their users to visualizations that cap-
ture desired trends or patterns—the onus is on the user to step
through a number of visualizations before they find these trends
or patterns. We illustrate by means of an example.

EXAMPLE 1. Consider an economist who wishes to study if
we’re heading towards another housing bubble in the USA. To do
so, she wants to explore a real estate dataset [7]. One specific ques-
tion that this economist may be interested in is whether there are
any towns for which the average sales prices has been roughly in-
creasing over time. Presently, our economist would need to gener-
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ate the sales prices over time, one visualization for each town, and
manually step through each one to find those that match her desired
pattern—a tedious and cumbersome process, given that there are
100s of towns. Next, say our economist has a hypothesis: she feels
that the sales prices may be correlated with the reduced availabil-
ity of houses in the areas where the sales prices have been going
up. To verify this hypothesis, our economist will have to first find
all the towns for which the sales prices is going up like before, fol-
lowing which she needs to individually generate the availability by
time charts for each of these areas, and then verify if the availabil-
ity is indeed going down for each one—an even more cumbersome
process than the previous scenario, since she now needs to look at
both sales over time and availability over time visualizations for all
towns. Lastly, say our economist wants to explore the percentage of
properties that are foreclosed across these towns—what are the typ-
ical patterns, and what are the outliers? Here, the economist will
have to perform “manual data mining”—she will have to individ-
ually step through the visualization of foreclosure rates over time
for each of these towns, and remember what she finds to be typical
trends, and what are surprising or anomalous. Given a trend, it
may be almost impossible for the economist to remember if she’s
seen a similar trend before, if it’s actually anomalous.

In short, no matter which hypothesis she wants to test, or which
pattern she wants to find, tedium and pain abounds, virtually pre-
venting data exploration.

In contrast, we have been developing an interactive data exploration
tool called zenvisage (a portmanteau of zen and envisage, meaning
to effortlessly visualize), targeted at easing the pain of data explo-
ration in scenarios like the one described above. zenvisage uses
two mechanisms to support effortless data exploration:
• Built-in Interactions and Summarization: zenvisage supports

simple interactions that allow users to specify the desired pat-
terns, following which zenvisage will automate the search for
those patterns. In our example, finding towns where the sales
price is going up is as simple as sketching an increasing curve
on a canvas, following which zenvisage will automate the search
for that curve among all the candidate visualizations. We show
a screenshot of zenvisage in action for this query in Figure 1.
zenvisage also supports other interactions, as we will describe
subsequently. Additionally, at each step along the way, zenvis-
age shows a summary of the typical trends (also known as mo-
tifs in the literature [30]), and outliers (also seen in Figure 1),
reducing the need in our example to remember whether a spe-
cific pattern was seen previously.

• Sophisticated Query Language, ZQL: For more complex pat-
terns, like the second hypothesis in our example, zenvisage sup-
ports a query language called ZQL, drawing from prior work
on Query-by-Example [39]. Via a user study, we have demon-
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Figure 1: zenvisage interactive visual query interface

strated that even individuals who have never programmed be-
fore, are able to use ZQL effectively after a small training pe-
riod of ten to fifteen minutes [2].

In our companion full paper [2], we describe the complete details
of zenvisage, including the front-end and back-end architecture,
the details of the query language along with its underlying explo-
ration algebra, and query optimization. We also describe concrete
real-world use cases via partners with whom we’re working to test
out zenvisage, spanning ad analytics, battery science, and genomic
data analysis. These real-world use cases inform and provide some
of the datasets for our demonstration scenarios later on.

The outline for this paper is as follows: in Section 2, we describe
the user experience of someone using zenvisage; in Section 3, we
briefly explain the zenvisage query language, ZQL; in Section 4,
we give a brief overview of the system architecture and query pro-
cessing; in Section 5, we describe the goals of our demonstration
scenarios; and in Section 6, we give an overview of the related
work.

2. USER EXPERIENCE
Since zenvisage is meant to be an end-user-facing interactive

data exploration tool, the user experience of the tool is hugely im-
portant in determining the utility and usability of the tool. Here,
we describe the experience of an individual using zenvisage. In the
next section, we dive into the details of the ZQL query language.

We once again return to our running example of the real estate
data analysis scenario. In Figure 1, we show zenvisage loaded with
the real estate dataset.
Attribute Selection. The first step is attribute selection (Box 1).
Here the user can specify the desired X axis attribute, and the de-
sired Y axis attribute for the visualization or visualizations that the
user is interested in. In this case, the user has specified the X axis is
quarters (in other words, time), and the Y axis is the sold price. (By
default zenvisage assumes average as the aggregation applied to the
Y axis, but this can be changed by clicking on the gear symbol next
to zenvisage.) Additionally, the user specifies the category: this is
variable indexing the space of candidate visualizations the user is
operating over. Here, the selected category is “metro”—indicating
a metro area or township.
Summarization of Typical and Outlier Trends. As soon as the
user selects the X, Y and category, immediately, zenvisage popu-
lates Box 2 with typical or representative trends across categories,
and outliers. In this case, there are three typical trends that were
found across different metros (i.e. categories): one corresponding
to a spike in the middle (Panama City), one to a gradual increasing
trend (San Jose), and one to a trend that increased and then de-
creased (Reno)—most of the other trends were found to be similar
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Figure 2: Finding cities with similar sales over year trends to a
user-drawn trend

to one of these three. The outlier visualizations (Pittsburgh, Peoria,
Cedar Rapids) have a large number of seemingly random spikes.

Drawing or Drag-and-Drop Canvas. Then, in Box 3, the editable
canvas, the user can either draw a shape that they are looking for, or
alternatively drag and drop one of the displayed visualizations into
the canvas. In this manner, the user indicates that they would like to
see a similarity search starting from the shape or pattern that they
have drawn or dragged onto the canvas. (zenvisage also supports a
dissimilarity search, the opposite of a similarity search, once again
a non-default option hidden away behind the gear symbol.) The
user is also free to edit the drawn pattern. In this figure, the user
has drawn a trend which is gradually increasing up, then gradually
decreasing after that.

Similarity Search Results. As soon as the user completes an in-
teraction in Box 3, Box 4 is populated with results corresponding
to visualizations (on varying the category) that are most similar to
the trend in Box 3, ordered by similarity. We describe how the sim-
ilarity search results are computed in Section 5. As yet another ex-
ample of similarity search, see Figure 2, where the user has drawn
a gradually increasing trend in the canvas area (or dragged an ex-
isting visualization onto the area), and the results returned below,
corresponding to San Jose, Denver, and Honolulu are matches of
increasing trends.

ZQL Specification Interface. Lastly, the user can specify a multi-
line ZQL query in Box 5, and once the user completes the action,
this request triggers a recomputation and redisplaying of the results
shown in Box 4.

Starting from this point, the user is free to switch back and forth
from ZQL to the simple interaction mode, depending on whether
the user has complicated requirements or simple ones.

3. ZQL QUERY LANGUAGE
We now briefly describe zenvisage’s query language, ZQL, form-

ing the core of zenvisage and aimed at supporting general data ex-
ploration. ZQL draws from and extends existing languages for vi-
sualization specification and encoding such as Cleveland’s Gram-
mar of Graphics [38] and the visualization algebra of Polaris, the
basis for Tableau [35], by adding data exploration capabilities to
automate the search for visualizations with specific patterns or in-
sights. The specification format of ZQL is inspired by Query-by-
Example (QBE) and similar to QBE, a ZQL query can be con-
structed using a tabular structure as depicted in Box 5 in Figure 1—
for clarity, we provide three examples of ZQL queries explicitly
laid out in Tables 1, 2, and 3, and we will explain these examples in
detail in the following. Note that ZQL invocations can also be em-



bedded within code—there is no restriction that the language has to
be only used or specified within the zenvisage frontend interface.
Details about our formal syntax, the expressiveness and power, and
completeness of ZQL can be found in our companion full paper [2].
Overall Description. ZQL is a high level language that aims to
automate the manual visual data exploration process by allowing
users to specify their desired visualization objective in a few lines.
Instead of providing the low-level data retrieval and manipulation
operations, users operate at the level of sets of visualizations, and
compare, sort, filter, and transform visualizations as well as at-
tributes — eventually visualized on either the X or Y axis.

As depicted in Table 1, a ZQL query consists of one or more
rows, where each row has well-defined columns, namely Name, X,
Y, Z, Viz, Constraints, and Process. These columns can be grouped
into two components: the visual component consisting of the X, Y,
Z, Viz, and Constraints columns, and the task component consisting
of the Process column, while the Name column is an identifier for
a line of ZQL. The goal of the visual component is to specify a set
of visualizations. Task component operates on and subselects from
these visualizations, applies filtering, sorting, or processing using
a core set of data exploration primitives. The output of the task
component can be further reused in the subsequent rows. We now
explain the syntax and semantics of ZQL with the help of examples;
for these examples, we operate on a fictitious product sales dataset
consisting of a single table over which visualizations are specified.
ZQL also operates over multiple tables, but we do not cover the
general case in this short demonstration paper.
Example 1. In this example, we are interested in finding the sales
over time over all regions for the products whose sales over time in
the US is similar to the sales over time for staplers. The example is
displayed in Table 1. In the first row, we find our first line of ZQL,
with the Name identifier set to f1. This row retrieves the visualiza-
tion corresponding to sum of sales by year for the product ‘stapler’.
The X column (corresponding to the X axis of the visualization)
is set to year, the Y column (corresponding to the Y axis) is set to
sales, and the Z column is set to product.stapler, indicating that the
attribute product has been set to the value ‘stapler’. The Z column
corresponds to the Category header in the previous section, indicat-
ing the space of visualizations over which the user is operating—in
this case, the Z column is fairly simple, there is a single visualiza-
tion, corresponding to product stapler. Lastly, the Viz column is
set to indicate that the displayed chart needs to be a bar chart with
aggregation as the SUM performed on the Y axis. The Viz column
thus specifies the visualization type and the aggregation method,
additionally it can also apply binning and interpolation; this col-
umn draws from the Grammar of Graphics format [38]—this col-
umn can be omitted, and defaults will be used [35]. For this row,
there are no Constraints or Process.

In the next row, with identifier f2, the X, Y, and Viz columns stay
similar, while the Z column is set to product.* indicating that the vi-
sual component for this row corresponds to a set of visualizations
formed by iterating over various product categories, one for each
product. The variable v1 is used to iterate over these categories.
Additionally, there is an entry in the Constraint column, indicat-
ing that location has been set to ‘US’. Unlike the Z column, which
is used to iterate through visualizations, the Constraints column is
used for applying filters to the data prior to the visualizations be-
ing generated or specified. Since we only want to compare with
product sales in the US, the location has been set to US. Thus, we
operate over visualizations for various products for sales over time
in the US.

The Process column in this row is used to compare, sort, and fil-
ter the visualizations retrieved in this row or previous rows. The

process column returns a subset of values for one or more variables
that it operates over, essentially corresponding to visualizations that
satisfy the desired properties. These variable values can be then
used in visual component columns of subsequent rows for output
visualization or further processing. The process column consists of
the two main parts: a functional primitive, and a sort-filter primi-
tive. The functional primitives assign a score to each visualization
based on how well the visualization satisfies the condition laid out
by the primitive. To handle the vast majority of visual data explo-
ration use cases, we define three classes of functional primitives,
differing in their inputs: T is a class of functional primitives that
assign a score by measuring the prevalence of a particular pattern
or trend within a single visualization—for example, monotonicity,
repetitiveness, or number of peaks. In our system at the moment,
we support monotonicity, but other primitives are easy to handle.
D is a class of primitives that assign a score by comparing two
visualizations: for example, one instantiation we support is dis-
tance computation—for which standard distance measure can be
used (more details later). Lastly, R is a generic class of functional
primitives that support arbitrary processing on visualizations, and
assigns a score to each visualization. One concrete instantiation
of R in zenvisage is for typical trends and outlier computation, for
which standard clustering algorithms can be used (again, details
later).

Then, the sort-filter primitive takes the output of a functional
primitive, sorts them using argmax, argmin or argany (returns any
visualization that satisfies some condition) and then filters them ei-
ther based on top-k or a threshold based criteria. In the second row
of Table 1, we compare the visualization for each product in f2 with
the visualization of stapler (f1) using a functional primitive D, com-
puting distance, via D(f1, f2). Then, argmin is a sort-filter primitive
that sorts the products based on distance scores and selects the top
10 product with minimum scores. Finally, in row 3, we output the
overall sales over year visualization for the selected products as
bar-charts. The * in *f3 indicates that these visualizations are to be
output to the user.
Example 2. In this example, we want to examine typical trends
for profit over time over all regions for those products whose sales
are increasing over time in the US, while decreasing over time in
UK. The ZQL query is depicted in Table 2. (Note that we exclude
the Viz and Constraints column if it is unused, in the former case,
default settings are used.) In the first row, we first fetch the sales
over time visualizations for all products in US and in the process
column, we select those products that have an increasing trend with
the help of the T functional primitive. Similarly, in the second row,
we select the products that have decreasing sales over time trends
in UK. In the third row, we first find the products whose visualiza-
tions appeared in both the first and the second rows (by applying
the expression v4 <- v2.range & v3.range, where v4 is the inter-
section of the elements in v2 and v3), and generate their profit over
time trends followed by using the R functional primitive to find five
representative or typical trends all in the third row corresponding to
f3. Finally in the last row, we output the profit over time line charts
visualizations for these five representative products.
Example 3. In this example, we are interested in finding a pair of
X and Y axes where the visualizations for two products ‘stapler’
and ‘chair’ differ the most. For doing this, we write a ZQL query
depicted in Table 3. In the first line, we fetch all visualizations for
the product ‘chair’ that can be formed by having different combi-
nations of X and Y axes. Similarly in the second row, we retrieve
all possible visualizations for the product ‘Chair’. In the process
column, we iterate over the possible pairs of X and Y axes values,
compare the corresponding visualizations in f1 and f2 and finally



Name X Y Z Constraints Viz Process
f1 ‘year’ ‘sales’ ‘product’.‘stapler’ bar.(y=avg(‘sum’))
f2 ‘year’ ‘sales’ v1 <– ‘product’.* location=‘US’ bar.(y=avg(‘sum’)) v2 <– argminv1[k = 10]D(f1, f2)

*f3 ‘year’ ‘sales’ v2 bar.(y=avg(‘sum’))
Table 1: A ZQL query which returns top 10 products that have the most similar sales over year visualization to stapler.

Name X Y Z Constraints Process
f1 ‘year’ ‘sales’ v1 <– ‘product’.* location=‘US’ v2 <– arganyv1[t > 0]T (f1)
f2 ‘year’ ‘sales’ v1 location=‘UK’ v3 <– arganyv1[t < 0]T (f2)
f3 ‘year’ ‘profit’ v4 <– (v2.range & v3.range) v5 <– argmaxv4[k = 5]R(f3)
*f4 ‘year’ ‘profit’ v5

Table 2: A ZQL query which returns 5 representative profit over years visualizations among the products that have positive sales over years
trends for the US but have negative sales over years trends for the UK.

Name X Y Z Process
f1 x1 <– * y1 <– * ‘product’.‘chair’
f2 x1 y1 ‘product’.‘desk’ x2,y2 <– argmaxx1,y1[k = 1]D(f1, f2)

*f3 x2 y2 ‘product’.‘chair’
*f4 x2 y2 ‘product’.‘desk’

Table 3: A ZQL query retrieving two different visualisations (among different combinations of x and y) for chair and desk that are the most
dissimilar.

select the pair of X and Y axis values where the two products differ
the most. In the last two rows, we output these visualizations.

Capabilities and Limitations. While the examples above have in-
dicated that ZQL is rather powerful, the reader may be wondering
what it does not handle. Indeed, there are many types of data analy-
sis tasks that ZQL is not meant for, including developing predictive
models, or data cleaning. We expect that users are already operat-
ing on structured datasets, i.e., data cleaning is already performed,
and are performing visual analysis and exploration as a precursor
to developing predictive models. Indeed, the wide popularity of
Tableau indicates that there is a need for this intermediate step. We
characterize the space of data exploration operations that ZQL is
capable of handling in our paper [2].

4. SYSTEM OVERVIEW
In this section, we provide an overview of the system architec-

ture of zenvisage: we begin by describing the various components
of zenvisage followed by a brief description of one of the most
interesting components of zenvisage: the query processor and op-
timizer.

4.1 zenvisage components
zenvisage is fully functional, with our collaborators in battery

science, ad analytics, and genomic data analysis either already us-
ing the tool, or fine-tuning the tool to their requirements. The
source-code of our current implementation is also available to pub-
lic 1, with regular updates posted at zenvisage homepage 2.

As depicted in Figure 3, zenvisage consists of two main com-
ponents: a front-end and a back-end, both of which work indepen-
dently of each other.

Front-end. The zenvisage front-end is implemented as a light-
weight web-client application that runs completely within a user’s
browsers. As described in Section 2 and Section 3, the front-end
provides a combination of intuitive drag-and-drop based operations
as well as an advanced ZQL based exploration interface for users to
search for visualization with desired insights. An important com-
ponent of the interface is the drawing panel where the users draw
trend lines, bar-charts, scatter-plots, or drag and drop an existing
visualization and edit it. Dygraph [1] is an open-source charting
library, that we use for the drawing panel as well as for visualiz-
ing the output. In addition to dygraph, the front-end uses javascript
libraries such as bootstrap (getboostrap.com) and angular (angu-
larjs.org). All user inputs at the interface are internally translated
1https://github.com/zenvisage/
2http://zenvisage.github.io
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Figure 3: System Architecture

and composed into one or more ZQL queries by the query builder
module at the front-end before being sent to the back-end for pro-
cessing. The front-end talks to the back-end through a REST inter-
face, and all of the data transfers happen in a JSON format. The
results from the back-end are processed and rendered using the re-
sult visualizer module. By applying simple rules that we draw from
prior work [20, 35], the result visualizer can also figure out effec-
tive visualization mappings and visual encodings for the results, if
the user has not already specified these in the query.

Back-end. The zenvisage back-end is responsible for running all
of the computations necessary for generating output visualizations
that match user-specified insights. It is developed completely in
Java and runs within an embedded Jetty web-server [3]. At a high
level, the back-end consists of a ZQL compiler, consisting of a
parser, an optimizer, and a query executor, and is capable of pro-
cessing any ZQL query. We provide the details of query processing
in the next Section 4.2. For storing and retrieving data, the back-
end currently supports two types of databases: a roaring bitmap-
based [9] in-memory database for small to medium-sized datasets,
and a PostgreSQL relational database for extremely large datasets.
In addition to ZQL query processing, the back-end also recom-
mends typical trends and outliers for the attributes specified, in-
dependent of user queries. The generated visualizations are all sent
to the front-end for rendering in a JSON format.

4.2 Query Processing
The ZQL query processor is responsible for compiling and exe-

cuting ZQL queries. It consists of four sub-components: the parser,
optimizer, visual component processor, and task component pro-
cessor. The visual component processor and task component pro-
cessor together make the ZQL query executor.

Parsing. The parser reads in the ZQL query is a textual format,
parses the query and validates its structure, and checks the database
catalog for the existence of the referenced columns and operators
including the functional primitives. If everything succeeds, the



parser creates a graph of computation from the ZQL rows—this
graph is a directed acyclic graph that describes the steps of compu-
tation and the dependencies across them as expressed in the ZQL
query. For each ZQL row, the parser creates two types of graph
nodes: a node for the visual component, and one for the task com-
ponent: we will simply call these the visual node, and the task node,
respectively. The visual node corresponds to the X, Y, Z, Viz and
Constraints columns; these columns specify the collection of visu-
alizations to be retrieved. The task node consisting of the functional
primitive and the sort-filter primitive, specifies the processing to be
applied on the visualizations generated from the visual nodes.

Optimizations. At a high level, we have two types of optimizations
on the parsed ZQL graph: inter-node and intra-node optimizations.
Inter-node optimizations reduce the ZQL graph by merging multi-
ple visual or task nodes. While merging multiple visual nodes, we
try to minimize the number of SQL queries as well as the number of
operations that need to be issued to the database for retrieving data.
For instance, we can merge two visual nodes that have the same X
axis value but different Y axis values. By doing so, we reduce the
number of scans and group by operations applied to the same data.
Similar to merging visual nodes, multiple task nodes can be merged
if we can apply multiple forms of processing together on the same
collection of visualizations. Inter-node optimizations also exploit
speculation: where two nodes are combined even if the latter de-
pends on the results of the former, as long as there is benefit to do-
ing it jointly. Intra-node optimizations transform individual graph
nodes by minimizing the number of visualizations or the number of
possible values in a given visualization by applying data reduction
techniques such as sampling, binning, and regression. By doing
this, we minimize the time taken by the task processor for process-
ing these visualizations. For instance, if we know the maximum
number of the pixels that can be visualized for a scatterplot, we can
apply the appropriate binning to both aggregate at a coarser gran-
ularity, and reduce the size of the intermediate JSON that needs to
be sent to the front-end.

Query Execution. The query executor takes the transformed graph
as an input; starting from the root nodes and following the outgo-
ing edges, it executes one or more nodes in parallel. Based on the
type of the node, it creates an instance of either a visual processor
or a task processor. The visual processor translates a visual node to
a SQL query and issues it to the underlying database. The gener-
ated SQL query has the following form: SELECT X, Y FROM
R WHERE Z=V AND (CONSTRAINTS) ORDER BY X.
The retrieved data is transformed into a set of visualizations by ap-
plying interpolation, regression, binning or aggregation. This set of
visualizations is stored in an n-dimensional array where each loca-
tion in the array contains one visualization. The result is either sent
as an input to another processor for further processing, or is sent to
the front-end for rendering. The task processor generates the post-
processing code from the functional and the sort-filter primitives in
the task node. It iterates through visualizations and for each visu-
alization, the functional primitive is called to process it and give it
a score. After scoring all the visualizations, the sort-filter primitive
is used to sort and filter the visualizations based on their scores.
The attribute values of the selected visualizations are then passed
to subsequent nodes for further processing, or for generating output
visualizations.

5. DEMONSTRATION SCENARIOS
The goals of our demonstration scenarios are to enable the con-

ference attendees to (1) understand how zenvisage’s simple interac-
tions can help facilitate the fast-forwarding to interesting insights;

(2) view how ZQL queries can support multi-step data exploration
workflows; (3) appreciate the wide applicability of zenvisage, across
a spectrum of use cases within a domain, and across domains; (4)
see how zenvisage supports customizability for the basic interac-
tions, and the impact of these customizations; and (5) take a bit
of a peek under the covers to see how zenvisage parses and opti-
mizes ZQL queries. Since we have already described (1) and (2) in
Section 2, we focus on the remaining points in the present section.
Note that given that we may not have a lot of time for our on-
stage presentation, that presentation will necessarily be condensed
and may not explore all aspects; however, during the demo session,
attendees will be able to explore all aspects of our demonstration
scenarios.
Datasets. Our primary focus will be on the real estate dataset [7],
like in our example in the introduction. This real estate dataset
is relatively small but quite intuitive, with 11K tuples and 12 at-
tributes. In addition, we will use datasets from three real domains
with a need for fast-forwarding to interesting insights: (1) a syn-
thetic ad analytics dataset, modeled after the real datasets at Turn,
Inc., for enabling ad analysts to ask questions like “which keyword
has similar behavior in terms of click-through rates over time to
a given keyword?”; (2) a physical dataset of electrolyte properties
from battery scientists at Carnegie Mellon University, for enabling
the rational design of Lithium-Ion batteries, asking questions like
“are there any electrolytes for which the dependence between these
two physical properties follows a hockey-stick shape?”; (3) a ge-
nomics dataset of gene-gene and protein interactions from an NIH-
sponsored genomics center at Illinois, supporting questions like
“are there features on which these two classes of genes can be ef-
fectively separated on a scatterplot?”. For all our datasets and us-
age scenarios, zenvisage will come pre-loaded with starting points
for analysis—via canned queries that the domain experts found to
be very useful for their objectives—with the participants able to
change the queries if they so choose to. Our intended objective is
to both convey some of the richness of exploration goals in these
domains, and educate the participants about these domains.
Customizability. zenvisage supports the retrieval of visualizations
similar to a given visualization, as well as typical and outlier vi-
sualizations. To do so, zenvisage needs distance measures to as-
sess the distance between two visualizations, be it ordinal visual-
izations (like time charts), categorical visualizations (like bar charts
or histograms), or non-aggregated visualizations (like scatterplots).
For example, for ordinal visualizations, one standard distance mea-
sure is the Euclidean distance measure, which computes the sum of
the element-wise square of the difference between corresponding
values in two visualizations, followed by an overall square-root.
Yet another distance measure is Dynamic Time Warping [32], a
standard distance measure for time series analysis that is based on
computing the least amount of effort to transform two visualiza-
tions by stretching and squishing them until they look like each
other. We have also been developing other home-grown distance
measures that assess the perceptual difference between the two vi-
sualizations, e.g., measures that weight different features on the
visualizations based on their visual prominence. One aspect of our
demonstration will be to allow participants to set the distance mea-
sure (once again hidden away under the gear symbol), allowing
them to observe the impact of these measures on visual similarity.
Similarly, the choice of the algorithm for typical patterns and out-
liers also has a huge impact on performance. Currently, we support
variations of the k-means algorithm, as well as our perceptually-
aware variants—once again, the attendees will be able to see the
impact both in terms of performance and accuracy of these mecha-
nisms.



Under the Covers. As described previously, zenvisage’s ZQL
query optimizer operates on a graph of nodes corresponding to
visual and task processors, with edges indicating the dependen-
cies between them. The query optimizer rewrites or simplifies this
graph using a combination of batching, parallelism, and speculation-
based rules, applying a cost model that we have developed [2],
to dictate if applying the rule helps reduce the query execution
time. Moreover, the optimizer simplifies or transforms individual
nodes in the graph by applying binning or interpolation. Subse-
quently this graph is executed as a sequence of SQL queries on a
traditional relational database or on the in-memory roaring-bitmap-
based database. To gain an appreciation for the query optimization
approach, attendees will be able to view the graph representing the
starting point of optimization, as well as the rewritten graph post
application of the optimization rules.

6. RELATED WORK
zenvisage draws from work in several communities; detailed re-

lated work descriptions can be found in our companion full pa-
per [2]—here, we briefly survey the most important related work.

From the visualization community, zenvisage draws from visual
specification algebra developed by Polaris and Tableau [5, 35] and
extends it to add support for exploration, aimed at reducing the need
for manual trial-and-error. Visualization systems like SeeDB [36]
or Profiler [21], and Voyager [20] provide restricted forms of vi-
sualization recommendation—the first two based on what is visu-
ally different, and the last based on aesthetics—without being full-
fledged exploration tools. Similarly, from the data mining commu-
nity, there has been a lot of work on time series data mining [25, 14,
10, 24, 8, 11, 23] including clustering and similarity search, how-
ever, this work has primarily focused on indexing for retrieval of, or
clustering for a fixed set of time series as opposed to a full-fledged
exploration tool that supports arbitrary exploration of attributes.
Work by the visualization community on TimeSearcher [15] devel-
ops a front-end for time-series data mining while being restricted
to a fixed set of time series, and only supporting a specific form of
drill-down, as opposed to the many operations possible on zenvis-
age, plus a full-fledged query language. There are systems [29,
37, 31, 16] which let users search for visualizations through query
by sketch on a single attribute type, zenvisage extends these work
to multiple data types, multiple sets of visualizations, and multiple
data sets, with necessary customization capabilities to the sketching
interface that can adapt to various needs of analysts.

Work from the databases community on data cube exploration [33,
34] is also related; our focus is not recommendation of aggregates
to explore and instead to support the search for patterns, trends,
or insights via a data exploration language, and simple interaction
primitives.

Our technical approach draws from principles in multi-query op-
timization (MQO) [12, 17, 22, 13], since our setting requires us to
generate many SQL queries that need to be executed in parallel;
however more fine-grained optimizations that do not apply in the
general MQO setting apply here. There has been some work on
generating visualizations on large datasets more rapidly preserving
visual properties; we draw from that work to apply sampling to
generate visualizations even faster [26, 19]. Unlike Immens [28]
and Nanocubes [27], also tailored for large-scale visualization, we
cannot precompute all aggregates upfront.
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