
SEEDB: Supporting Visual Analytics
with Data-Driven Recommendations

Manasi Vartak
MIT

mvartak@mit.edu

Samuel Madden
MIT

madden@csail.mit.edu

Aditya Parameswaran
University of Illinois (UIUC)

adityagp@illinois.edu

Neoklis Polyzotis
Google

alkispolyzotis@gmail.com

ABSTRACT
Data analysts often build visualizations as the first step in their an-
alytical workflow. However, when working with high-dimensional
datasets, identifying visualizations that show relevant or desired
trends in data can be laborious. We propose SEEDB, a visual-
ization recommendation engine to facilitate fast visual analysis:
given a subset of data to be studied, SEEDB intelligently explores
the space of visualizations, evaluates promising visualizations for
trends, and recommends those it deems most “useful” or “interest-
ing”. The two major obstacles in recommending interesting visual-
izations are (a) scale: dealing with a large number of candidate vi-
sualizations and evaluating all of them in parallel, while responding
within interactive time scales, and (b) utility: identifying an appro-
priate metric for assessing interestingness of visualizations. For the
former, SEEDB introduces pruning optimizations to quickly iden-
tify high-utility visualizations and sharing optimizations to maxi-
mize sharing of computation across visualizations. For the latter, as
a first step, we adopt a deviation-based metric for visualization util-
ity, while indicating how we may be able to generalize it to other
factors influencing utility. We implement SEEDB as a middleware
layer that can run on top of any DBMS. Our experiments show that
our framework can identify interesting visualizations with high ac-
curacy. Our optimizations lead to multiple orders of magnitude
speedup on relational row and column stores and provide recom-
mendations at interactive time scales. Finally, we demonstrate via
a user study the effectiveness of our deviation-based utility metric
and the value of recommendations in supporting visual analytics.

1. INTRODUCTION
Data visualization is often the first step in data analysis. Given

a new dataset or a new question about an existing dataset, an ana-
lyst builds various visualizations to get a feel for the data, to find
anomalies and outliers, and to identify patterns that might merit fur-
ther investigation. However, when working with high-dimensional
datasets, identifying visualizations that show interesting variations
and trends in data is non-trivial: the analyst must manually spec-
ify a large number of visualizations, explore relationships between
various attributes (and combinations thereof), and examine differ-
ent subsets of data before finally arriving at visualizations that are
interesting or insightful. This need to manually specify and exam-
ine every visualization hampers rapid analysis and exploration.

In this paper, we tackle the problem of automatically identify-
ing and recommending visualizations for visual analysis. One of
the core challenges in recommending visualizations is the fact that
whether a visualization is interesting or not depends on a host of
factors. In this paper, we adopt a simple criterion for judging the in-
terestingness of a visualization: a visualization is likely to be inter-
esting if it displays large deviations from some reference (e.g. an-

other dataset, historical data, or the rest of the data.) While simple,
we find in user studies (Section 6) that deviation can often guide
users towards visualizations they find interesting. Of course, there
are other elements that may make a visualization interesting. Ex-
amples include aesthetics (as explored in prior work [37, 23]), the
particular attributes of the data being presented (our interactive tool
allows analysts to choose attributes of interest) or other kinds of
trends in data (for example, in some cases, a lack of deviation may
be interesting.) Therefore, while our focus is on visualizations with
large deviation, we develop a system, titled SEEDB, and underly-
ing techniques that are largely agnostic to the particular definition
of interestingness. In Section 7, we describe how our system can
be extended to support a generalized utility metric, incorporating
other criteria in addition to deviation.

Given a particular criteria for interestingness, called the utility
metric, the goal of recommending visualizations based on this met-
ric raises several challenges: first, even for a modest dataset with a
small number of attributes, the number of visualizations that need
to be considered is often in the hundreds or thousands. For some
datasets, simply generating each of these visualizations can take
many minutes (as we will see in this paper). Second, evaluating
each of these visualizations for utility requires repeated computa-
tions on the same underlying data, wasting time and computational
resources. Third, recommendations need to be made at interactive
speeds, necessitating approximations that return visualizations with
slightly lower accuracy. Addressing these challenges and trade-offs
in our system, SEEDB, is the primary focus of this paper.

We begin with an illustrative example that explains the SEEDB
use case and motivates our deviation-based utility metric.

EXAMPLE 1.1. Consider a journalist performing research for
a news article about millennials. Previous analyses show that mil-
lennials are getting married at an older age than previous genera-
tions, raising questions about how this change affects wider society.
Consequently, the journalist is examining how marital-status im-
pacts socio-economic indicators like education and income, among
others. She uses the US Census data [30] to conduct her analysis
comparing unmarried US adults to married US adults.

As is common in many analytical workflows, the journalist be-
gins by using her favorite visualization software to graph various
indicators in the data. For instance, she may build a chart showing
average income as a function of marital status, visualize marital
status as a function of education, plot the correlation with race
and gender, visualize impact on hours worked per week, and so
on. Depending on the types of visualizations created, the number
of possible visualizations grows exponentially with the number of
indicators in the dataset. As a result, creating and examining all
possible visualizations quickly becomes untenable.

We have identified that across many analyses, visualizations that



Sex Married Capital
Gain

Female True 758
Female False 380
Male True 1657
Male False 356

(a) Data: Avg Capital Gain vs. Sex

Sex Married Age
Female True 44
Female False 28
Male True 43
Male False 28

(b) Data: Avg Age vs. Sex
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Figure 1: Motivating Example

show trends in the target data (unmarried adults) that deviate from
trends in reference data (married adults) are potentially interest-
ing to analysts. For example, from our user study (Section 6), we
know that for this particular task involving the Census dataset, an-
alysts find the visualization in Figure 1c interesting since it depicts
an aspect of the data for unmarried adults that is significantly dif-
ferent from the equivalent aspect for married adults. Specifically,
the chart shows that although capital gain for female and male
unmarried adults is approximately equal, capital gain for female,
married adults is only half that of male, married adults. The same
user study also shows that Figure 1d is a visualization that analysts
do not find interesting. Note that this chart shows that age does not
show different trends between unmarried and married adults.

The example above suggests that visualizations that depict devia-
tions from a reference are potentially interesting to analysts; our
goal in the current paper is to build a system that uses deviation
as a means to identify the most interesting visualizations from a
large set of potential visualizations. No existing system that we are
aware of makes use of variation from a reference to recommend
visualizations. Current visualization packages like Spotfire [3] and
Tableau [37] have limited capabilities for recommending visualiza-
tions. Their recommendations only implement rules-of-thumb re-
garding chart aesthetics such as choice of chart type, colors and
marks. As noted previously, in addition to our deviation-based
metric, there are of course many other dimensions (aesthetics, user
preferences, etc.) that can influence the perceived utility of a visu-
alization, a few of which we discuss in Section 7, leaving a detailed
investigation of such metrics for future work.

Our implementation of SEEDB incorporates an end-to-end data
querying and visualization environment that allows analysts to man-
ually generate their own visualizations (like Tableau or Spotfire), or
get data-driven recommendations on demand, which can be further
refined using the manual interface. We chose to support both au-
tomated and manual interaction in SEEDB because we believe that
a mixed-initiative interface [14] is essential for keeping analysts in
the loop and allowing them to drive the analysis process.

In developing SEEDB as a middleware layer that can run on any
database system, we develop and validate the use of two orthogonal
techniques to make the problem of recommending visualizations
based on deviation tractable:
• Sharing Computation. We develop a suite of multi-query opti-

mization techniques to share computation among the candidate
visualizations, reducing time taken by 20X.

• Pruning Computation. We develop pruning techniques to avoid
wasting computation on obviously low-utility visualizations,
adapting techniques from traditional confidence-interval-based [13]

top-k ranking and multi-armed bandits [40], further reducing
time taken by 5X.

Lastly, we develop a general phase-based execution framework that
allows us to leverage the benefits of these two techniques in tan-
dem, reducing the time for execution by over 100X and making
many recommendations feasible in real-time. In summary, the con-
tributions of this paper are:
• We build a system that uses deviation from reference as a crite-

rion for finding the top-k most interesting visualizations for an
analytical task (Section 2).

• We present the design of SEEDB as a middleware layer that can
run on any SQL-compliant DBMS (Section 3).

• We describe SEEDB’s execution engine (Section 4), that uses
sharing techniques to share computation across visualizations
(Section 4.1) and pruning techniques to avoid computation of
low-utility visualizations (Section 4.2).

• We evaluate the performance of SEEDB and demonstrate that
SEEDB can identify high-utility visualizations with high accu-
racy and at interactive time scales (Section 5).

• We present the results of a controlled user study that validates
our deviation-based utility metric, and evaluates SEEDB against
a manual chart construction tool showing that SEEDB can speed
up identification of interesting visualizations (Section 6).

• We describe how we can extend SEEDB to capture other utility
criteria beyond deviation (Section 7).

Finally, we note that the vision for SEEDB was described in a vi-
sion paper [27] and presented as a demonstration [38], but neither
of these short papers described detailed, concrete algorithms or ar-
chitectures, or presented any form of evaluation. Specifically, the
present work builds upon the SEEDB vision by proposing a novel,
general-purpose phase-based execution framework that can lever-
age both sharing and pruning optimizations (that were described
very briefly in the short papers) and presenting both a performance
study of the system as well as a extensive user study demonstrating
the efficacy of our system in aiding analysis.

2. PROBLEM STATEMENT
As is standard in OLAP, and in visual analytics tools such as

Tableau and Polaris [1, 37], we focus on a database D with a
snowflake schema. We denote the attributes that we would like to
group-by in our visualizations as dimension attributes, A, and the
attributes that we would like to aggregate in our visualizations as
measure attributes, M . Further, we denote by F the set of poten-
tial aggregate functions over the measure attributes (e.g. COUNT,
SUM, AVG). For visualization purposes, we assume that we can
groupD along any of the dimension attributesA and we can aggre-
gate any of the measure attributes M . This leads to a two-column
table that can be easily visualized via standard visualization mech-
anisms, such as bar charts or trend lines. (Recent work has shown
that bar charts are the overwhelming majority of visualizations cre-
ated using visual analytics tools [25].) Our techniques also apply
to the general Polaris table algebra [37], where we can aggregate
across multiple attributes at once, and group-by multiple attributes,
potentially leading to more than two columns. For ease of expo-
sition, we focus on two-column result visualizations in this paper,
which can be readily visualized using bar charts or trend lines.

In addition to the database D, we assume that the analyst has
indicated a desire to explore a subset of data specified by a query
Q. The goal of SEEDB is to recommend visualizations of Q that
have high utility (which we measure using deviation, as explained
below). The class of queries Q posed over D that we support en-
compass a general class of queries that select a horizontal fragment
of the fact table and one or more dimension tables. Conceptually,



we can view this as a simple selection query over the result of join-
ing all the tables involved in the snowflake schema. That said, we
can also support projections and joins which essentially have the
effect of respectively dropping certain columns or tables from con-
sideration in the visualizations. Thus, we support a general class
of select-project-join (SPJ) queries over the snowflake schema. For
the purpose of this discussion, we focus on simple selection queries
over the result of joining all the tables in the snowflake schema. We
note that this class of queries suffices for most visualization tasks.
For instance, in our illustrative example, Q can select any subset of
records from the Census table. We denote the result of Q as DQ.

Each SEEDB visualization can be translated into an aggregate
/ group-by query on the underlying data. We represent a visual-
ization Vi as a function represented by a triple (a,m, f), where
m ∈ M,a ∈ A, f ∈ F . We call this an aggregate view or simply
a view. The aggregate view performs a group-by on a and applies
the aggregation function f to measure attribute m. As an exam-
ple, Vi(D) represents the results of grouping the data in D by a,
and then aggregating the m values using f ; Vi(DQ) represents a
similar visualization applied to the data in DQ.

SEEDB determines the utility of visualizations via deviation; vi-
sualizations that show different trends in the query dataset (i.e. DQ)
compared to a reference dataset (called DR) are said to have high
utility. The reference dataset DR may be defined as the entire un-
derlying dataset (D), the complement of DQ (D - DQ) or data
selected by any arbitrary query Q′ (DQ′ ). The analyst has the op-
tion of specifyingDR; we useDR = D as the default if the analyst
does not specify a reference. Given a view Vi, the deviation-based
utility of Vi is computed as the deviation between the results of ap-
plying Vi to the query data, DQ, and applying Vi to the reference
data, DR. View Vi applied to the results of Q can be expressed as
query QT below. We call this the target view.

QT = SELECT a, f(m) FROMDQ GROUP BY a

Similarly, view Vi applied to the reference data Vi(DR) can be
expressed as QR. We call this the reference view.

QR = SELECT a, f(m) FROMDR GROUP BY a

The (two) SQL queries corresponding to each view are referred to
as view queries. The results of the above view queries are sum-
maries with two columns, namely a and f(m). To ensure that all
aggregate summaries have the same scale, we normalize each sum-
mary into a probability distribution (i.e. the values of f(m) sum to
1). For our example visualization of Average Capital Gain vs. Sex
(Figure 1), the probability distribution for the target view Vi(DQ)
(unmarried adults), denoted as P [Vi(DQ)] is: (F: 0.52, M: 0.48)
while that for the reference view Vi(DR) (married adults), denoted
as P [Vi(DR)] is: (F: 0.31, M: 0.69). In contrast, the distributions
for the visualization Average Age vs. Sex are (F: 0.5, M: 0.5) and
(F: 0.51, M: 0.49) for the target and reference view respectively.
Qualitatively, we see that the distributions show a large deviation
for the former visualization and hardly any deviation for the latter.

Given an aggregate view Vi and probability distributions for the
target view (P [Vi(DQ)]) and reference view (P [Vi(DR)]), we de-
fine the utility of Vi as the distance between these two probabil-
ity distributions. The higher the distance between the two distri-
butions, the more likely the visualization is to be interesting and
therefore higher the utility. Formally, if S is a distance function,

U(Vi) = S(P [Vi(DQ)], P [Vi(DR)])

Computing distance between probability distributions has been well
studied in the literature, and SEEDB supports a variety of distance

functions to compute utility, including Earth Movers Distance, Eu-
clidean Distance, Kullback-Leibler Divergence (K-L divergence),
and Jenson-Shannon Distance. Our experiments use Earth Movers
Distance as the default distance function, but in Section 7 we dis-
cuss results for other distance functions. Also in Section 7, we
describe how our utility metric can be generalized to capture other
aspects of interest to analysts (beyond deviation).

We can formally state the SEEDB problem as follows:

PROBLEM 2.1. Given a user-specified query Q on a database
D, a reference dataset DR, a utility function U as defined above,
and a positive integer k, find k aggregate views V ≡ (a,m, f)
that have the largest values ofU(V ) among all the views (a,m, f),
while minimizing total computation time.

3. SEEDB FRONT-END & ARCHITECTURE
We now describe SEEDB’s front-end user experience, and then

describe the architecture and the execution engine in more detail.
Front-end Experience. SEEDB’s visualization recommendation
capabilities are packaged into an end-to-end visual analytics envi-
ronment, with basic visualization functionalities such as those pro-
vided by Tableau. Figure 3 shows the web front-end for SEEDB
comprising four parts (A) dataset selector used to connect to a
database and query builder used to formulate queries; (B) visu-
alization builder used to manually specify visualizations; (C) vi-
sualization display pane; and (D) a recommendations plugin that
displays recommended visualizations. The recommendations pro-
vided by SEEDB change in response to changes in the query (B)
issued against the database.
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Figure 2: SeeDB Architecture

Architectural Overview. SEEDB is implemented as a middleware
layer that can run on top of any SQL-compliant database system.
Figure 2 depicts the overall architecture of our system. The SEEDB
client is a web-based front-end that captures user input and renders
visualizations produced by the SEEDB server. The SEEDB server
is composed of two main components. The first component, the
view generator, is responsible for parsing the input query, query-
ing system metadata and generating the list of visualization queries
that must be evaluated. The goal of the execution engine is to eval-
uate the collection of queries using our optimizations on top of the
underlying DBMS. The selected aggregate views (i.e., those with
high deviation) are sent to the SEEDB client and are displayed as
visualization recommendations to the user, who can then interact
with these visualizations.
Basic Execution Engine. To motivate the need for optimizations,
we first describe how our execution engine would work without op-
timizations. To identify the k best aggregate views, SEEDB needs
to do the following: For each aggregate view, it generates a SQL
query corresponding to the target and reference view, and issues
the two queries to the underlying DBMS. It repeats this process for
each aggregate view. As the results are received, it computes the
distance between the target and reference view distributions, and
identifies the k visualizations with highest utility.



This basic implementation has many inefficiencies. In a table
with a dimensions, m measures, and f aggregation functions, 2×
f ×a×m queries must be executed. As we show in Section 5, this
can take >100s for large data sets. Such latencies are unacceptable
for interactive use.
Execution Engine with Optimizations. To reduce latency in eval-
uating the collection of aggregate views, the execution engine ap-
plies two kinds of optimizations: sharing, where aggregate view
queries are combined to share computation as much as possible,
and pruning, where aggregate view queries corresponding to low
utility visualizations are dropped from consideration without scan-
ning the whole dataset. These optimizations are largely orthogonal
to each other. To derive benefits from both these kinds of optimiza-
tions, we develop a phased execution framework. Each phase oper-
ates on a subset of the dataset. Phase i of n operates on the ith of n
equally-sized partitions of the dataset. (Empirically, we have found
n = 10 to work well, though our results are not very sensitive to
the value of n.) For instance, if we have 100, 000 records and 10
phases, the i = 4th phase processes records 30, 001 to 40, 000.
The execution engine begins with the entire set of aggregate views
under consideration.
• During phase i, the SEEDB updates partial results for the views

still under consideration using the ith fraction of the dataset.
The execution engine applies sharing-based optimizations to
minimize scans on this ith fraction of the dataset.

• At the end of phase i, the execution engine uses pruning-based
optimizations to determine which aggregate views to discard.
The partial results of each aggregate view on the fractions from
1 through i are used to estimate the quality of each view, and
the views with low utility are discarded.

The retained aggregate views are then processed on the i + 1th
round, and the process continues. In this manner, the set of views
under consideration decreases across these phases, with all aggre-
gate views at the start of the first phase, and only the k views left at
the end of the nth phase.

Algorithm 1 Phase-based Execution Framework

1: viewsInRunning← {all views}
2: for currPhase← 1 . . . n do
3: updateResults(viewsInRunning)
4: pruneViews(viewsInRunning)
5: return viewsInRunning.getTopK()
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Figure 3: SEEDB Frontend

4. SEEDB EXECUTION ENGINE
In this section, we describe the sharing and pruning optimiza-

tions designed to optimize the generation of visualizations.

4.1 Sharing-based Optimizations
In the naive implementation, each visualization is translated into

view queries that get executed independently on the DBMS. How-
ever, for a particular user input, the queries evaluated by SEEDB
are very similar: they scan the same underlying data and differ only
in the attributes used for grouping and aggregation. This presents
opportunities to intelligently merge and batch queries, reducing the
number of queries issued to the database and, in turn, minimizing
the number of scans of the underlying data. Sharing computation
in our setting is a special case of the general problem of multi-
query optimization [35]; we discuss the relationship in more detail
in Section 8. Specifically, we apply the following optimizations:
Combine Multiple Aggregates: Aggregate view queries with the
same group-by attribute can be rewritten as a single query with
multiple aggregations. Therefore, instead of executing (two queries
each for) views (a1,m1, f1), (a1,m2, f2) . . . (a1,mk, fk), SEEDB
combines them into a single view (a1, {m1,m2 . . .mk}, {f1, f2 . . . fk})
which can be executed via just two queries. We have found that
there is minimal to no impact on latency for combining aggregates
in both row and column stores.
Combine Multiple GROUP BYs: After applying our multiple ag-
gregates optimization, SEEDB is left with a number of queries with
multiple aggregations but only single-attribute groupings. These
queries can be further combined to take advantage of multi-attribute
grouping. However, unlike combining multiple aggregates, the ad-
dition of a grouping attribute can dramatically increase the number
of groups that must be maintained and (possibly) lead to slower
overall performance for large number of groups.

We claim (and verify in Section 5) that grouping can benefit per-
formance so long as memory utilization for grouping stays under
a threshold. Memory utilization is, in turn, proportional to the
number of distinct groups present in a query. If a set of attributes
a1. . .am are used for grouping, the upperbound on the number of
distinct groups is given by

∏m
i=1 |ai|. Given a memory budget S,

the challenge is now to determine the optimal grouping of attributes
that each respect the memory budget. Formally, the problem is:

PROBLEM 4.1 (OPTIMAL GROUPING). Given memory bud-
get S and a set of dimension attributes A = {a1. . .an}, divide the
dimension attributes in A into groups A1, . . . , Al (where Ai ⊆ A
and

⋃
Ai=A) such that if a query Q groups the table by any Ai,

the memory utilization for Q does not exceed S.
Notice that the above problem is isomorphic to the NP-Hard bin-

packing problem [22]. If we let each dimension attribute ai corre-
spond to an item in the bin-packing problem with weight log(|ai|),
and set the bin size to be logS, then packing items into bins is
identical to finding groups A1, . . . , Al, such that the estimated size
of any query result is below S. We use the standard first-fit algo-
rithm [17] to find the optimal grouping of dimension attributes.
Combine target and reference view query: Since the target and
reference views differ only in the subset of data the query is ex-
ecuted on, SEEDB rewrites these two view queries as one. For
instance, if the target and reference view queries are Q1 and Q2
respectively, they can be combined into a single query Q3.
Q1 =SELECT a, f(m) FROMD WHERE x < 10 GROUP BY a

Q2 =SELECT a, f(m) FROMD GROUP BY a

Q3 =SELECT a, f(m), CASE IF x < 10 THEN 1 ELSE 0 END

as g1, 1 as g2 FROMD GROUP BY a, g1, g2



Parallel Query Execution: SEEDB executes multiple view queries
in parallel: these queries can often share buffer pool pages, re-
ducing disk access times. However, the precise number of paral-
lel queries needs to be tuned taking into account buffer pool con-
tention, locking, and cache line contention, among other factors [28].
Other Optimizations: To further speedup processing, SEEDB can
also pre-compute results for static views (e.g. reference views on
full tables) or operate on pre-computed data samples. Such opti-
mizations are orthogonal to the problem of efficiently evaluating a
large number of views, which we must address even in the presence
of pre-computation or sampling.

4.2 Pruning-Based Optimizations
In practice, most visualizations are low-utility, meaning com-

puting them wastes computational resources. Thus, as described
earlier, at the end of every phase, the execution engine uses prun-
ing optimizations to determine which aggregate views to discard.
Specifically, partial results for each view based on the data pro-
cessed so far are used to estimate utility and views with low utility
are discarded. The SEEDB execution engine supports two pruning
schemes. The first uses confidence-interval techniques to bound
utilities of views, while the second uses multi-armed bandit alloca-
tion strategies to find top utility views.
Confidence Interval-Based Pruning. Our first pruning scheme
uses worst-case statistical confidence intervals to bound view util-
ities. This technique is similar to top-k based pruning algorithms
developed in other contexts [15, 29]. Our scheme works as follows:
during each phase, we keep an estimate of the mean utility for ev-
ery aggregate view Vi and a confidence interval around that mean.
At the end of a phase, we use the following rule to prune low-utility
views: If the upper bound of the utility of view Vi is less than the
lower bound of the utility of k or more views, then Vi is discarded.
To illustrate, suppose a dataset has 4 views V1 . . .V4 and we want
to identify the top-2 views. Further suppose that at the end of phase
i, V1-V4 have confidence intervals as shown in Figure 4. Views V1

and V2 have the highest utility estimates so far and are likely to be
in the top-2 views. View V3 is currently not the top-2, but its con-
fidence interval overlaps with that of the top-2, making it possible
that V3 could replace V1 or V2. The confidence interval for V4, on
the other hand, lies entirely below the confidence intervals of V1

and V2. Since we can claim with high probability that the utility
of V4 lies within its confidence interval, it follows that, with high
probability, V4’s utility will be lower than that of both V1 and V2,
and it will not appear in the top-2 views. We state the algorithm
formally in Algorithm 2.

V1#

V2# V3#

V4#U
(l
ity

#

Views#

Figure 4: Confidence Interval based Pruning

Algorithm 2 Confidence Interval Based Pruning

1: viewsInRunning.sortByUpperbound()
2: topViews← viewsInRunning.getTopK()
3: lowestLowerbound← min(lowerbound(topViews))
4: for view 6∈ topViews do
5: if view.upperbound < lowestLowerbound then
6: viewsInRunning.remove(view)

We use worst case confidence intervals as derived from the Hoeffding-
Serfling inequality [36]. The inequality states that if we are given

N values y1, . . . , yN in [0, 1] with average µ, and we have have
drawnm values without replacement, Y1, . . . , Ym, then we can cal-
culate a running confidence interval around the current mean of the
m values such that the actual mean of the N is always within this
confidence interval with a probability of 1− δ:

THEOREM 4.1. Fix any δ > 0. For 1 ≤ m ≤ N − 1, define

εm =

√
(1− m−1

N
)(2 log log(m) + log(π2/3δ))

2m
.

Then: Pr

[
∃m, 1 ≤ m ≤ N :

∣∣∣∣∑m
i=1 Yi

m
− µ

∣∣∣∣ > εm

]
≤ δ.

In our setting, each Yi corresponds to the an estimate of utility com-
puted based on the records seen so far.
Multi-Armed Bandit Pruning. Our second pruning scheme em-
ploys a Multi-Armed Bandit strategy (MAB) [40][40, 5, 21]. In
MAB, an online algorithm repeatedly chooses from a set of alter-
natives (arms) over a sequence of trials to maximize reward. We
note that this is the first time that bandit strategies have been ap-
plied to the problem of identifying interesting visualizations.

A recently-studied variation of MAB focuses on finding the arms
with the highest mean reward [6, 4]. This variation is identical to
the problem addressed by SEEDB: our goal is find the visualiza-
tions (arms) with the highest utility (reward). Specifically, we adapt
the Successive Accepts and Rejects algorithm from [6] to find arms
with the highest mean reward (See Algorithm 3). At the end of
every phase (Section 3), views that are still under consideration are
ranked in order of their utility means. We then compute two dif-
ferences between the utility means: ∆1 is the difference between
the highest mean and the k + 1st highest mean, and ∆n is the dif-
ference between the lowest mean and the kth highest mean. If ∆1

is greater than ∆n, the view with the highest mean is “accepted”
as being part of the top-k (and it no longer participates in prun-
ing computations). On the other hand, if ∆n is higher, the view
with the lowest mean is discarded from the set of views in the run-
ning. [6] proves that under certain assumptions about reward dis-
tributions, the above technique identifies the top-k arms with high
probability.

Algorithm 3 MAB Based Pruning

1: viewsInRunning.sortByUtilityMean()
2: {ūi}← sorted utility means
3: ∆1← ū1 - ūk+1

4: ∆n← ūk - ūn

5: if ∆1 > ∆n then
6: viewsInRunning.acceptTop()
7: else
8: viewsInRunning.discardBottom()

Consistent Distance Functions. Note that the two pruning schemes
described above have guarantees in other settings that do not di-
rectly carry over to our setting—for example, the MAB setting as-
sumes that each trial samples from a fixed underlying distribution,
while in fact, our trials correspond to random values across m dis-
tributions (groups), which are aggregated together to form a utility
estimate for a given view. In our evaluation, we show that in spite
of this limitation, the pruning schemes work rather well in practice.

We can, however, get a weaker guarantee: we can show that as
we sample more and more, the estimated utility Û can be made
to be arbitrarily close to U for all aggregate views. Essentially,
this means that any pruning algorithm (including Confidence and
MAB) that uses a sufficiently large sample will prune away low



utility views with high probability. We can state our claim formally
in the following lemma.

LEMMA 4.1 (CONSISTENCY). Let the target and reference
visualizations both have m groups. Let Û denote our estimate of
the utility U based on a uniformly random sample across all m
groups. Then, as the number of samples tends to∞, Û → U with
probability 1− δ, for as small δ as needed.
For the purpose of the proof of the lemma above, we focus on the
case where the visualization Vi corresponds to the AVG aggregate.
Similar results can be shown for the SUM and STD aggregates.
Unfortunately, MAX and MIN are not amenable to sampling-based
optimizations, as is traditionally well-known in the approximate
query processing literature [7, 16].

Additionally, we focus on the case when S is defined to be `2,
i.e., the Euclidean distance metric. Once again, similar results
can be shown for other distance metrics, such as the `1, the Earth
Movers Distance metric, or the Jenson-Shannon metric.

We reproduce the utility equation here: U(Vi) = S(P [Vi(DQ)],
P [Vi(DR)]). Here, P refers to the probability distribution of either
the target visualization or the comparison visualization. P is repre-
sented as a normalized vector whose entries sum up to 1.

PROOF. (Sketch) Let us say the estimated average for the target
visualization for each of the groups is t̂i, and the estimated averages
for the comparison visualization for each of the groups is ĉi. We
further define t̂ (respectively ĉ) to be the estimated sum of averages
for the target visualization (respectively comparison visualization).
We let the true values for each of these quantities be the same vari-
ables without the hats. Then, it can be shown that that U evaluates
to:

Û =

∑
ĉ2i
ĉ2

+

∑
t̂2i
t̂2
− 2

∑
t̂iĉi

ĉt̂
Now we informally describe the steps of our proof: say we sam-

ple enough to get ĉ within ε of c, with a high enough probability,
and we sample enough to get t̂ within ε of t, with a high enough
probability. Then, we have

Û ≥
∑
ĉ2i

(c+ ε)2
+

∑
t̂2i

(t+ ε)2
− 2

∑
t̂iĉi

(c− ε)(t− ε)

≥
∑
ĉ2i
c2

(1− ε) +

∑
t̂2i
t2

(1− ε)− 2

∑
t̂iĉi

(c− ε)(t− ε)

≥
∑
ĉ2i
c2

(1− ε) +

∑
t̂2i
t2

(1− ε)− 2

∑
t̂iĉi
ct

(1 + ε2 + ε)

Similarly, if we have sampled enough to get the ĉi and the t̂i within
γ close of their actual values, we will have:

Û ≥
∑
c2i
c2

(1 + f(γ))(1− ε) +

∑
t2i
t2

(1 + f(γ))(1− ε)

− 2

∑
tici
ct

(1 + h(γ))(1 + ε2 + ε)

where f(.) and h(.) are small polynomial functions. Thus, we will
have sandwiched Û from the bottom by U − ρ, and similarly by
U+ρ′ from the top. ρ, ρ′ will be polynomials that depend on ε and
γ. Now, we will use the Hoeffding’s inequality for the last step of
the proof. Hoeffding’s inequality, when applied to a collection of n
i.i.d. random variables, whose sum is represented by X , gives us:

Pr(|X − E[X]| ≥ t) ≤ 2e
− 2nt2

c2 (1)

where c is a bound on the range. If we set the right hand side to
some δ, and set t = ε, we have

ε =

√
1

2n
ln

2

δ

and therefore, as n tends to ∞, ε tends to 0, for fixed values of
δ. The same holds true for t = γ. Thus, Û will tend to U as the
number of samples increases to infinity.

It is in fact also possible to explicitly derive a number of samples
such that Û is close to U within a certain error bound and with a
certain probability.

We call distance functions that have this property as consistent
distance functions. Consistent distance functions allow pruning
schemes to gather increasingly better estimates of utility values
over time (as long as the samples are large enough). Specifically,
we show empirically in Section 5.4 that the Confidence Interval
and MAB-based pruning schemes work well for EMD (i.e., have
high accuracy while reducing latency), and then in Section 7, we
show that these schemes work well for other consistent distance
functions.

4.3 Offline Pruning.
Even before any queries are issued to SEEDB, we have the abil-

ity to identify clusters of attributes that are strongly correlated with
each other, such that if we elect to display a visualization on one of
them, we can avoid displaying visualizations on others (since they
would be redundant). Consider for example a flight dataset that
stores names of airports as well as the corresponding airport codes.
Since names of airports and airport codes have a 1:1 relationship,
generating, say, average delay by airport name, and average de-
lay by airport code would lead to identical visualizations. Conse-
quently, it would suffice to compute and recommend only one of
these visualizations.

We adopt the following steps to prune redundant views: (1) For
each table, we first determine the entire space of aggregate views.
(2) Next, we prune all aggregate views containing attributes with 0
or low variance since corresponding visualizations are unlikely to
be interesting. (3) For each remaining view Vi, we compute the dis-
tribution P [Vi(D)] for reference views on the entire dataset D. (4)
The resulting distributions are then clustered based on pairwise cor-
relation. (5) From each cluster, we pick one view to compute as a
cluster representative and store “stubs” of clustered views for sub-
sequent use. At run time, the view generator accesses previously
generated view stubs, removes redundant views and passes the re-
maining stubs to the execution engine. Offline pruning allows us
to significantly reduce the number of views (and execution time) in
real datasets; for the DIAB dataset described in Section 5, we re-
duce the number of possible views from 72 to 41 (45% reduction),
and from 70 to 54 (25% reduction) for the BANK dataset.

5. PERFORMANCE EVALUATION
In the next two sections, we present an evaluation of SEEDB

both in terms of performance when returning visualizations and in
terms of user studies. In both sections, we report results for SEEDB
on a variety of real and synthetic datasets listed in Table 1.

In this section, we focus on performance studies, where our goal
is to evaluate how well our sharing and pruning optimizations im-
prove latency, and how our pruning optimizations affect accuracy.
In each experiment, our primary evaluation metric is latency, i.e.,
how long does it take SEEDB to return the top-k visualizations. For
experiments involving our pruning strategies, we measure quality
of results through two additional metrics, namely accuracy and util-
ity distance (discussed further in Section 5.4). Since we expect data
layout to impact the efficacy of our optimizations, we evaluate our
techniques on Postgres, a row-oriented database (denoted ROW) as
well as Vertica, a column-oriented database (denoted COL).

The following experiments use earth mover distance (EMD) as



Name Description Size |A| |M| Views Size
(MB)

Synthethic Datasets
SYN Randomly distributed, 1M 50 20 1000 411

varying # distinct values
SYN*-10 Randomly distributed, 1M 20 1 20 21

10 distinct values/dim
SYN*-100 Randomly distributed, 1M 20 1 20 21

100 distinct values/dim
Real Datasets

BANK Customer Loan dataset 40K 11 7 77 6.7
DIAB Hospital data 100K 11 8 88 23

about diabetic patients
AIR Airline delays dataset 6M 12 9 108 974

AIR10 Airline dataset 60M 12 9 108 9737
scaled 10X

Real Datasets - User Study
CENSUS Census data 21K 10 4 40 2.7

HOUSING Housing prices 0.5K 4 10 40 <1
MOVIES Movie sales 1K 8 8 64 1.2

Table 1: Datasets used for testing

our distance function for computing deviation (Section 2). In Sec-
tion 7, we briefly discuss results of using different distance func-
tions to compute deviation. All experiments were run on a single
machine with 8 GB RAM and a 16 core Intel Xeon E5530 pro-
cessor. Unless described otherwise, experiments were repeated 3
times and the measurements were averaged.

We begin by presenting a summary of our experimental findings
and then dive into performance results for individual optimizations.

5.1 Summary of Findings
Figures 5.a and 5.b show a summary of SEEDB performance for

the four (large) real datasets from Table 1 (BANK, DIAB, AIR and
AIR10). For each dataset, we show the latencies obtained on the
ROW and COL store by the basic SEEDB framework (NO_OPT),
by our sharing optimizations (SHARING), and by the combination
of our sharing and pruning optimizations (COMB). We also show
latencies for early result generation with COMB (COMB_EARLY),
where we return approximate results as soon as the top-k visual-
izations have been identified. The results in Figure 5 use the CI
pruning scheme and k=10.
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Figure 5: Performance gains from all optimizations

• [> 100X speedup overall] The combination of our sharing and
pruning optimizations provides a speedup of up between 50X

(COMB) – 300X (COMB_EARLY) for ROW (Figure 5a) and
10X (COMB) – 30X (COMB_EARLY) for COL (Figure 5b).
This reduces latencies for small datasets like DIAB from 12s
to 200ms, and from almost 2 hrs to tens of seconds for large
datasets like AIR10.

• [8–20X speedup from sharing] The sharing optimizations (Sec-
tion 4.1) alone produce performance gains of up to 20X for
ROW and 8X for COL.

• [5X speedup from pruning without loss of accuracy] Pruning op-
timizations (Section 4.2) provide additional gains of up to 5X.
Early result return, in particular, enables real-time response for
large datasets, e.g. for AIR, the COMB_EARLY strategy al-
lows SEEDB to return results in under 4s while processing the
full dataset takes tens of seconds. We also find that quality of
results is not adversely affected by pruning: the utility distance
(defined later) for our pruning strategies is close to 0.

• [Multiplicative gains] A gain of 20X from sharing optimiza-
tions in the ROW store combines with the 5X gain from pruning
to produce an overall gain of over 100X (Figure 5a).

• [Gains improve on larger datasets] The overall gain is much larger
for AIR10 (300X) vs. BANK (10X). We find that our SHAR-
ING optimization is best suited for small datasets like BANK
and DIAB, while COMB and COMB_EARLY are essential for
large datasets like AIR and AIR10.

In the next sections, we discuss the performance of individual opti-
mizations and how they relate to the overall performance gain.
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Figure 7: Effect of Group-by and Parallelism
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5.2 Basic SEEDB Framework
Summary: Applying no optimizations leads to latencies in the 100s
of seconds for both ROW and COL; latency increases linearly in
the size of the dataset and number of views. Without any opti-
mizations, the basic SEEDB serially executes two SQL queries for



each possible view. Figure 6a shows latency of SEEDB vs. the
number of rows (100K rows–1M rows) in the dataset, while Figure
6b shows latency as a function of the number of views (50–250).
These charts show results for the SYN dataset obtained by varying
the size of the table and number of attributes (SYN is comparable
to the AIR dataset). First, notice that the basic framework with
no optimizations has very poor performance: latency for ROW is
between 50-500s, while it is between 10-100s for COL. This is
because, depending on the dataset, both ROW and COL run be-
tween 50 to 250 SQL queries for each SEEDB invocation. Sec-
ond, COL runs about 5X faster than ROW. This is expected because
most queries only select a few attributes, benefitting column-stores.
Third, as expected, the latency of the basic framework is propor-
tional to the number of rows as well as the number of views in the
table. Since the latencies for the basic framework are very high
for interactive applications, it is clear that aggressive optimization
needs to be employed.

5.3 Sharing Optimizations
In this section, we study the performance of the sharing opti-

mizations described in Section 4.1. Recall that the goal of these
optimizations is to reduce the number of queries run against the
DBMS and to share scans as much as possible between queries.
The following experiments report results on the synthetic datasets
SYN and SYN* (Table 1). We chose to test these optimizations
on synthetic data since we can control all parameters of the data
including size, number of attributes, and data distribution. (Results
on real datasets are shown in Figure 5a and 5b).
Combining Multiple Aggregates: Summary: Combining view quer-
ies with the same group-by attribute but different aggregates gives
a 3-4X speedup for both row and column stores. To study the lim-
its of adding multiple aggregates to a single view query, we varied
the maximum number of aggregates in any SEEDB-generated SQL
query (nagg) between 1 and 20. The resulting latencies on the SYN
dataset are shown in Figure 7a (log scale on the y-axis). As we can
see, latency reduces consistently with the number of aggregations
performed per query. However, the latency reduction is not linear
in nagg because larger nagg values require maintenance of more
state and access more columns in a column store. Overall, this op-
timization provides a 4X speedup for ROW and 3X for COL.
Parallel Query Execution: Summary: Running view queries in
parallel can offer significant performance gains. Executing SEEDB-
generated SQL queries in parallel can provide significant perfor-
mance gains because queries can share buffer pool pages. How-
ever, a high degree of parallelism can degrade performance for a
variety of reasons [28]. Figure 7b shows how latency varied as we
varied the number of parallel SQL queries issued by SEEDB. As
expected, low levels of parallelism produced sizable performance
gains but high levels led to degraded performance. The optimal
number of queries to run in parallel is approximately 16 (equal to
the number of cores), suggesting that choosing a degree of paral-
lelism equal to the number of cores is a reasonable policy.
Combining Multiple Group-bys: Summary: Combining multi-
ple view queries each with a single group-by attribute into a sin-
gle query with multiple grouping improves performance by 2.5X
in row stores. We now study the effect of combining multiple
queries each with a single group-by into one query with multiple
grouping. Unlike the multiple aggregates optimization, the im-
pact of combining group-bys is unclear due to the significantly
larger memory requirement as well as post-processing cost. We
claim in Section 4.1 that grouping can benefit performance so long
as the total memory utilization stays under a threshold. To ver-

ify our claim, we ran an experiment with datasets SYN*-10 and
SYN*-100. For each dataset, we varied the number of group-by
attributes in SEEDB-generated SQL queries (ngb) between 1 and
10. Since each attribute in SYN*-10 has 10 distinct values and that
in SYN*-100 has 100, a query with ngb = p will require mem-
ory proportional to max(10p, num_rows) for SYN*-10 and pro-
portional to max(100p, num_rows) for SYN*-100. The results of
the experiment are shown in Figure 8a. We see that as the num-
ber of group-by attributes increases from 1 to 10, the latency of
ROW (blue) decreases initially. However, once the memory budget
SROW (proxied by the number of distinct groups) exceeds 10000,
latency increases significantly. We see a similar trend for COL, but
with a memory budget SCOL of 100.1 Thus, we find empirically
that memory usage from grouping is in fact related to latency and
that optimal groupings must keep memory usage under a threshold.

To evaluate the gains offered by our bin-packing optimization,
we evaluate two methods to perform grouping, MAX_GB and BP.
MAX_GB simply sets a limit on the number of group-bys in each
query (ngb) where as BP applies our bin-packing strategy using the
respective memory budgets. Figure 8b shows a comparison of the
two methods. To evaluate MAX_GB, we varied ngb was varied be-
tween 1 and 20 (solid lines). Since SYN contains attributes with be-
tween 1 – 1000 distinct values, memory utilization for a given ngb

can be variable. For example, ngb = 3 can have anywhere between
1 and 109 distinct groupings, thus breaking the memory budget
for some groupings. Because groupings with MAX_GB depends
on order, results in Figure 8b are averages over 20 runs. The dotted
lines show the latency obtained by performing optimal grouping via
bin-packing. Unlike MAX_GB, BP consistently keeps memory uti-
lization under the memory budget. Consequently, we observe that
BP improves performance for both ROW and COL. We observe
a significant, 2.5X improvement in ROW because the large mem-
ory budget SROW allows many queries to be combined. COL, in
contrast, shows a much less pronounced speedup since its smaller
memory budget (SCOL= 100) biases optimal grouping to contain
single attribute groups.
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Figure 9: Effect of All Optimizations

All Sharing Optimizations: Summary: Applying all of our shar-
ing optimizations leads to a speedup of up to 20X for row stores,
and 8X for column stores; column stores are still faster than row
stores. Based on the optimal parameters identified from the previ-
ous experiments, we combined our optimizations to obtain the best
performance. For ROW, we applied all the above optimizations
with nagg set to the total number of measure attributes in the ta-
ble, memory threshold SROW = 104 and parallelism set to 16. For
COL, we set nagg and number of parallel queries similarly but did
not apply the group-by optimization because of low performance
gains. Figure 9 shows the latency of SEEDB on SYN when all
optimizations have been applied. We see that our sharing optimiza-
tions lead to a speed up of 20X for ROW (Figures 9a) and a speedup
of 10X in COL (Figures 9b). Our optimizations are most effective

1The different memory budgets can be explained based on the different internal pa-
rameteres and implementations of the two systems.



for datasets with large sizes and many views, particularly for ROW
where reduction in table scans has large benefits.

5.4 Pruning Optimizations
In the next set of experiments, we evaluate the impact of our

pruning optimizations (Section 4.2).
Metrics: We evaluate performance of pruning optimizations along
two dimensions, latency, as before, and result quality. We measure
result quality with two metrics: (1) accuracy: if {VT } is the set
of aggregate views with the highest utility and {VS} is the set of
aggregate views returned by SEEDB, the accuracy of SEEDB is de-
fined as 1

{|VT }|
×|{VT }∩{VS}|, i.e. the fraction of true positives in

the aggregate views returned by SEEDB. (2) utility distance: since
multiple aggregate views can have similar utility values, we use
utility distance as a measure of how far SEEDB results are from the
true top-k aggregate views. We define utility distance as the differ-
ence between the average utility of {VT } and the average utility of
{VS}, i.e., 1

n
(
∑

i U(VT,i)−
∑

i U(VS,i)).
Accuracy vs. Utility Distance. Since our pruning optimizations rely
on utility estimates, the accuracy of pruning depends on the dif-
ferences between utilities of consecutive views. Specifically, if
V1 . . . Vn is the list of aggregate views ordered by decreasing util-
ity, then the accuracy of pruning is inversely proportional to the
difference between the k-th highest utility and the k + 1-st utility,
i.e., ∆k = U(Vk)− U(Vk+1). Views with large ∆k values can be
pruned accurately while whose with small ∆ks can lead to lower
absolute accuracy. While this is true, notice that small ∆ks are, in
fact, the result of views at the top-k boundary having similar utility
(and interestingness). For instance, the utilities at the top-5 bound-
ary for the DIAB dataset are U(V5) = 0.257, U(V6) = 0.254, and
U(V7) = 0.252 (see Figure 10b). The small ∆ks lead to lower ac-
curacy for k = 5, but the very similar utility values indicate that V6

and V7 are (almost) equally interesting as V5 . Therefore, even if
V6 or V7 are incorrectly chosen to be in the top-k, the quality of
results is essentially as high as when V5 would have been chosen.
Our utility distance metric correctly captures this overall quality of
results. Utility distance indicates that, in the worst case, even when
both V6 or V7 are incorrectly chosen, the overall utility of the top-5
differs only by 0.013 (≈5% error) units compared to the true top-5.
As a result, we jointly consider accuracy as well as utility distance
when evaluating result quality.
Techniques: In the following experiments, we evaluate four tech-
niques for pruning low-utility views. In addition to the two pruning
strategies from Section 4.2, namely the Hoeffding Confidence In-
tervals (CI) and the Multi-Armed Bandit (MAB), we implement
two baseline strategies. The no pruning strategy processes the en-
tire data and does not discard any views (NO_PRU). It thus pro-
vides an upperbound on latency and accuracy, and lower bound on
utility distance. The other baseline strategy we evaluate is the ran-
dom strategy (RANDOM) that returns a random set of k aggregate
views as the result. This strategy gives a lowerbound on accuracy
and upperbound on utility distance: for any technique to be useful,
it must do significantly better than RANDOM. Since absolute la-
tencies of any pruning strategy depend closely on the exact DBMS
execution techniques, in this section, we report relative improve-
ments in latency, specifically, the percent improvement in latency
with pruning compared to latency without pruning. Absolute la-
tency numbers for real datasets are discussed in Section 5.1. We do
not employ early stopping for any of these techniques.
Datasets: Because pruning quality depends closely on the underly-
ing data distribution, we evaluate our pruning optimizations on the
real-world datasets from Table 1. In this section, we analyze the

results for BANK and DIAB in detail; results for AIR and AIR10
are discussed in Section 5.1.
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(a) Bank dataset: utility distribution
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(b) Diabetes dataset: utility distribution
Figure 10: Distribution of Utilities

In each of our experiments, we vary k — the number of visu-
alizations to recommend — between 1 and 25 (a realistic upper
limit on the number of aggregate views displayed on a screen) and
measure the latency, accuracy, and utility distance for each of our
strategies. We pay special attention to k = 5 and 10 because empir-
ically these k values are used most commonly. Since the accuracy
and utility distance of our techniques are influenced by the order-
ing of data, we repeat each experiment 20 times and randomize data
between runs. We report average metrics over 20 runs.
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(a) Bank Dataset Accuracy
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(b) Diabetes Dataset Accuracy
Figure 11: Accuracies Across Datasets

Accuracy and Utility Distance: Summary: The MAB and CI strat-
egy both produce results with accuracy>75% and near-zero utility
distance for a variety of k values. MAB does slightly better than
CI when utlity values are closely spaced. In general, smaller ∆k

values lead to lower accuracy, but this is offset by lower utility dis-
tance that is a consequence of the smaller ∆ks.
BANK dataset: The distribution of utilities for all aggregate views
of the bank dataset is shown in Figure 10a. In this chart, verti-
cal lines denote the cutoffs for utilities of the top-k views where
k={1,. . . ,10,15,20,25}. The highest utility for this dataset corre-
sponds to the right-most line in this chart while the 25-th highest
utility corresponds to the left-most line. We observe that the high-
est and second highest utility are spread well apart from the rest
(∆k=0.0125). The top 3rd–9th utilities are similar (∆k<0.002)
while the 10th highest utility is well separated from neighboring
utilities (∆10=0.0125). The remaining aggregate views once again
have similar utilities (∆k<0.001). We see the effect of utility dis-
tribution in the performance of our pruning strategies. Figure 11a
and Figure 12a respectively show the average accuracy and utility
distance of our strategies over 20 runs. We find that MAB consis-
tently produces 75% or better accuracy for all values of k and CI
produces 85% or better accuracy for k>10. For k=1 and 2, the
accuracy is 75% for both pruning strategies (due to large ∆k val-
ues). The corresponding utility distance is almost zero for MAB



and about 0.015 for CI (note that these are averages). Between
k=3. . . 9, the accuracy for all strategies suffers due to small ∆ks
(< 0.002). In spite of lower accuracies, note that utility distance is
consistently small (< 0.02). After k=10, the performance of all our
strategies improves once again and tends to 100% accuracy and 0
utility distance. We note that NO_PRU necessarily has perfect per-
formance, while RANDOM has extremely poor accuracy (<0.25)
and utility distance (>5X that of CI and MAB).
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(a) Bank Dataset Utility Distance
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(b) Diabetes Dataset Utility Dist.
Figure 12: Utility Distances Across Datasets

DIAB dataset: Next, we briefly review results for the diabetes dataset.
The distribution of true utilities for all aggregate views in this dataset
are shown in Figure 10b. We observe that utilities for the top 10 ag-
gregate views are very closely clustered (∆k <0.002) while they
are sparse for larger ks. Therefore, we expect lower pruning ac-
curacy for k < 10 but high accuracy for large k’s. We see this
behavior in Figure 11b where the accuracy of pruning is quite low
(< 60%) for k=1 but improves consistently to 68% (CI) and 86%
(MAB) for k=5 and is >80% for k≥10. In the companion figure,
Figure 12b, we see that although accuracy is relatively low k<5,
utility distance is small (0.013 for CI, 0.002 for MAB) indicating
that the results are high quality. Both CI and MAB produce 40X
smaller utility distances compared to RANDOM.
Latency: Summary: Both pruning strategies provide a reduction in
latency of 50% or more relative to NO_PRU. For smaller k, reduc-
tions can be even higher, closer to 90%; this can be especially use-
ful when we want to identify and quickly display the first one or two
top views. Figures 13a and 13b show the latency of our strategies
for the banking and diabetes dataset. First off, we observe that the
use of either of CI or MAB produces a 50% reduction in latency
throughout. In fact, for CI, we obtain almost a 90% reduction in
latency for small k. For k=5, MAB produces between 50 - 60%
reduction while CI produces a reduction of 60 - 80%. Early stop-
ping, i.e. returning approximate results once the top-k views have
been identified, can produce even better latency reduction (results
in Section 5.1). As expected, as k increases, latency also increases
because we can prune fewer aggregate views.
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(a) Bank Dataset Latency

●

●

●

● ●

●
● ● ● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●30

40

50

60

70

80

90

0 5 10 15 20 25
k

%
 r

ed
uc

tio
n 

in
 la

te
nc

y

algo
●

●

CI
MAB

(b) Diabetes Dataset Latency
Figure 13: Latency Across Datasets

CI vs. MAB. In our evaluation, we compared two competing prun-
ing strategies, CI and MAB. From the figures, we observe that
MAB, on average, has higher accuracy and lower utility distance
compared to CI, i.e., overall, it produces higher quality results.
However, we find that CI performs much better than MAB on la-
tency. Since CI can prune views more aggressively than MAB
(MAB only discards one view at a time), it can rapidly prune the

space of views, but this comes at the cost of result quality. Depend-
ing on the tradeoff between latency and quality of results, we can
choose the best pruning strategy from CI and MAB.

6. USER STUDY
The previous section evaluated SEEDB and our optimizations

in terms of performance. In this section, we assess the utility of
SEEDB’s recommendations with real users. First, we perform a
study to validate our deviation-based utility metric. We show that
although simple, our deviation-based metric can find visualizations
users feel are interesting. Second, we compare SEEDB to a man-
ual charting tool without visualization recommendations. We show
that SEEDB can enable users to find interesting visualizations faster
and can surface unexpected trends. We also find that users over-
whelmingly prefer SEEDB over a manual charting tool.

6.1 Validating Deviation-based Utility
SEEDB uses deviation between the target and reference dataset

as a measure of interestingness of a visualization.
Ground Truth. To validate deviation as a utility metric, we ob-
tained ground truth data about interestingness of visualizations and
evaluated SEEDB against it. To obtain ground truth, we presented
5 data analysis experts with the Census dataset (Section 1) the anal-
ysis task of studying the effect of marital status on socio-economic
indicators. We presented experts with the full set of potential ag-
gregate visualizations and asked them to classify each visualization
as interesting or not interesting in the context of the task. Of the 48
visualizations, on average, experts classified 4.5 visualizations (sd
= 2.3) as being interesting for the task. The small number indi-
cates that of the entire set of potential visualizations, only a small
fraction (~10%) show interesting trends. To obtain consensus on
ground truth, we labeled any visualization chosen by a majority of
participants as interesting; the rest were not. This process identified
6 interesting and 42 uninteresting visualizations. In addition to Fig-
ures 1c (interesting, recommended by SEEDB) and Figure 1d (not
interesting, not recommended by SEEDB), Figure 14a, a visualiza-
tion recommended by SEEDB, was labeled as interesting (accord-
ing to a expert: “. . . it shows a big difference in earning for self-inc
adults”) while Figure 14b was labeled as not interesting (notice the
lack of deviation). While some classifications can be explained
using deviation, some cannot: Figure 14c shows high deviation
and is recommended by SEEDB, but was deemed uninteresting,
while Figure 14d shows small deviation but was deemed interest-
ing (“. . . hours-per-week seems like a measure worth exploring”).
Efficacy of Deviation-based Metric. Figure 15a shows a heatmap
of the number of times a visualization was classified as interesting
(yellow = popular, blue = not popular), sorted in descending order
of our utility metric. We notice that the majority of yellow bands
fall at the top of the heatmap, indicating, qualitatively, that popu-
lar visualizations have higher utility. To evaluate the accuracy of
SEEDB’s recommendations over the Census data, we ran SEEDB
for the study task, varying k between 0 . . . 48, and measured the
agreement between SEEDB recommendations and ground truth.
As is common in data mining, we computed the “receiver oper-
ating curve” or ROC curve for SEEDB, Figure 15b, depicting the
relationship between the true positive rate (TPR) on the x-axis and
false positive rate (FPR) on the y-axis for different values of a pa-
rameter (k in this case). TPR is the number of interesting visu-
alizations returned as a fraction of the total number of interesting
visualizations, while FPR is the fraction of recommendations that
were incorrectly returned as interesting, as a fraction of the number
of non-interesting visualizations. ROC curves for highly accurate
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Figure 14: Examples of ground truth for visualizations
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Figure 15: Performance of Deviation metric for Census data

classifiers are skewed towards the upper left corner of the graph.
The red line indicates the random baseline (every example is clas-
sified randomly). As can be seen in the figure, SEEDB performs
significantly better than the baseline. For example, for k=3, all 3 vi-
sualizations recommended by SEEDB are interesting, giving TPR
= 0.5 and FPR = 0; for k=5, four of the 5 recommended visualiza-
tions are interesting, giving TPR = 4/6 = 0.667 and FPR = 0.05.
The area under ROC (AUROC) for SEEDB—the typical measure
of classifier quality—is 0.903. This indicates that the accuracy of
SEEDB recommendations is very high.2

While ROC curves on different datasets and tasks will vary, this
user study shows that SEEDB recommendations have high quality
and coverage, despite focusing on a simple deviation-based utility
metric. We expect that taking into account other aspects (apart from
deviation), would improve SEEDB’s recommendations even more.

6.2 SEEDB vs. Manual Visualization Tool
In this section, we describe results from a controlled user study

comparing SEEDB to a manual visualization tool for performing
visual analysis. We hypothesized that: (i) when using SEEDB, an-
alysts would find interesting visualizations faster than when using
the manual tool, (ii) analysts would find more interesting visual-
izations when using SEEDB vs. the manual tool, and (iii) analysts
would prefer using SEEDB to a manual tool.
Participants and Datasets. We recruited 16 participants (5 female,

2AUROC’s above 0.8 are considered very good, while those above 0.9 are
excellent

11 male), all graduate students with prior data analysis experience
and visualization experience (e.g. R, matplotlib or Excel). None of
the participants had previously worked with the study datasets.

Our study used the Housing and Movies datasets from Table 1.
These datasets were chosen because they were easy to understand
and comparable in size and number of potential visualizations.
Study Protocol. Our study used a 2 (visualization tool) X 2 (dataset)
within-subjects design. The visualizations tools used were SEEDB
and MANUAL, a manual chart construction-only version of SEEDB
(i.e., SEEDB with the recommendations bar, component “D” in
Figure 3, removed). Using the same underlying tool in both modes
allowed us to control for tool functionality and user interface. We
used a within-subjects design to compensate for per-participant dif-
ferences in data analysis expertise, and used counterbalancing to
remove any effects related to order and the test dataset.

Our study began with a short tutorial on the two study tools. Fol-
lowing the tutorial, participants were asked to perform two visual
analysis tasks, one with SEEDB, and one with MANUAL. In ei-
ther case, we introduced participants to the test dataset and the an-
alytical task using written instructions. Each analytical task asked
participants to use the specified tool to find visualizations support-
ing or disproving a specific hypothesis. Participants were asked to
use the bookmark button (in component “C” in Figure 3) to flag
any visualizations they deemed interesting in context of the task.
Participants were also encouraged to think aloud during the study.
Since the analytical tasks were open-ended, we capped each analy-
sis session at 8 minutes. Participants filled out a tool-specific survey
at the end of each task and an exit survey at the end of the study.
Most survey questions were answered on a 5-point Likert scale.
The study lasted ~45 minutes and participants were compensated
with a $15 gift card. All studies were conducted in a lab setting
using Google Chrome on a 15-inch Macbook Pro.
Methods and Metrics. Over the course of each study session, we
collected data by three means: interaction logs from each tool, re-
sponses to surveys, and exit interview notes. The interaction logs
capture the number of visualizations constructed, the number of
visualizations bookmarked, bookmark rate, and interaction traces.
SEEDB and MANUAL both support the construction of different
types of charts such as bar charts, scatterplots etc. Since SEEDB
can only recommend aggregate visualizations shown as bar charts,
we report results for aggregate visualizations. We evaluate statis-
tical significance of our results using ANOVA, and supplement in-
teraction analysis with qualitative observations.
Results. Over the course of our study, participants built over 220
visualizations and bookmarked 70 visualizations (32% bookmark
rate). We next describe our key findings and observations.
1. SEEDB enables fast visual analysis. Table 2 shows an overview
of the bookmarking behavior for each tool focusing on total num-
ber of visualizations generated, number of bookmarks and book-
marking rate. First, we observe that the total number of (aggregate)
visualizations created in the SEEDB condition is higher than that
for MANUAL. While not statistically significant, this difference
suggests that analysts are exposed to more views of the data with
SEEDB than MANUAL, possibly aiding in a more thorough ex-
ploration of the data. Next, we find that the number of aggregate
visualizations bookmarked in SEEDB is much higher (3X more)
than that for MANUAL. In fact, the two-factor analysis of vari-
ance shows a significant effect of tool on the number of book-
marks, F(1,1) = 18.609, p < 0.001. We find no significant effect
of dataset, F(1, 1) = 4.16. p > 0.05, or significant interaction be-
tween tool and dataset. While this result indicates that analysts
bookmark more visualizations in SEEDB, we note that the num-
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Figure 16: Interaction trace examples: (R) = Recommendation, (M) =
Manual, (B) = Bookmark

ber of bookmarks for a tool may be affected by the total num-
ber of visualizations built with the tool. Therefore, to account
for variance in the total number of visualizations, we also exam-
ine bookmark_rate for the two tools defined as the fraction of
created visualizations that are bookmarked (num_bookmarks

total_viz ). We
find, once again, that the bookmark_rate for SEEDB (0.42) is
3X larger than the bookmark_rate for MANUAL (0.14). The
two-factor analysis of variance shows a significant effect of tool on
bookmark rate, F(1,1) = 10.034, p < 0.01. As before, we find no
significant effect of dataset on bookmark rate, F(1, 1) = 3.125. p >
0.05, or significant interaction between tool and dataset. Together
the two results above indicate that there is a significant effect of
tool on both the number of bookmarks as well as the bookmark
rate. SEEDB-recommended visualizations are 3 times more likely
to be interesting compared to manually constructed visualizations.
Finally, 87% of participants indicated that SEEDB recommenda-
tions sped up their visual analysis, many alluding to the ability of
SEEDB to “. . . quickly deciding what correlations are relevant” and
“[analyze]...a new dataset quickly”.

total_viz num_bookmarks bookmark_rate
MANUAL 6.3 ± 3.8 1.1 ± 1.45 0.14 ± 0.16

SEEDB 10.8 ± 4.41 3.5 ± 1.35 0.43 ± 0.23
Table 2: Aggregate Visualizations: Bookmarking Behavior Overview

2. All participants preferred SEEDB to MANUAL. 100% of
all users preferred SEEDB to MANUAL for visual analysis, i.e.,
all users preferred to have recommendation support during analy-
sis. 79% of participants found the recommendations “Helpful” or
“Very Helpful” and thought that they showed interesting trends. In
addition, a majority of users found SEEDB a powerful means to
get an overview of interesting trends and starting points for fur-
ther analysis. One participant noted that SEEDB was “. . . great tool
for proposing a set of initial queries for a dataset”. 79% of partici-
pants also indicated that SEEDB visualizations showed unexpected
trends (e.g., the difference in capital gain in Figure 14a), and in-
dicated that SEEDB suggested visualizations they wouldn’t have
created, e.g., although users did not manually generate Figure 1c, it
was identified as an interesting visualization in the ground truth.
An intriguing observation from two participants was that while
they wanted recommendations to support them in analysis, they did
not want to rely too heavily on recommendations. One participant
noted “The only potential downside may be that it made me lazy so
I didn’t bother thinking as much about what I really could study or
be interested in”. This observation suggests lines for future work
that can find the right balance between automatically recommend-
ing insights and allowing the user to leverage their intuition and
creativity.
3. SEEDB provides a starting point for analyses. To our knowl-
edge, SEEDB is the first tool to provide recommendations for sup-
porting visual analysis. As a result, we were interested in how
recommendations could fit into the analytical workflow. While a
participant’s exact workflow was unique, we repeatedly found spe-
cific patterns in the interaction traces of SEEDB. Figure 16 shows
examples of three such traces. Interaction traces show that partic-
ipants often started with a recommended visualization, examined
it, modified it one or more times (e.g. by changing to a different

aggregate function or measure attribute) and bookmarked the re-
sulting visualization. Thus, even if participants did not bookmark
recommendations directly, they often created small variations of
the visualization and bookmarked them. In other words, along with
providing recommendations that were interesting by themselves,
SEEDB helped direct participants to other interesting visualiza-
tions by seeding their analysis. This pattern was highlighted in
user comments as well; e.g., “. . . would be incredibly useful in the
initial analysis of the data”, “. . . quickly deciding what correlations
are relevant and gives a quick peek”, “. . . great tool for proposing a
set of initial queries for a dataset”. In addition to understanding the
role recommendations played in analysis, these observations also
served to reinforce the design choice of SEEDB as a complement
to manual chart construction; the mixed-initiative nature of the tool
is essential for it to be functional in visual analysis.

6.3 Limitations
Given that both studies described above were conducted in the

lab, the studies had limitations. First, due to constraints on time and
resources, the sample sizes for both studies were small. A larger
set of participants and spread of datasets could be used to further
demonstrate the efficacy of our system. Second, our user studies
were conducted with graduate students participants. Consequently,
our results represent the perspective of capable data analysts who
have limited familiarity with the data. We find that SEEDB is par-
ticularly well suited for this particular setting of initial data analysis
when the user is not very familiar with the data. It would be instruc-
tive to evaluate SEEDB on datasets about which users have expert
knowledge. Finally, we note that being a research prototype, the
limited functionality of SEEDB and potential issues of learnability
may have impacted our study.

7. UTILITY METRICS: DISCUSSION
We now discuss various aspects of our choice of utility met-

rics, including: (a) Distance Functions, i.e., using different dis-
tance functions for measuring deviation, (b) General Utilities, i.e.,
how our techniques can be used to capture a variety of other as-
pects of visualization recommendation beyond deviation, and (c)
SEEDB’s Capabilities, i.e., how well SEEDB captures different
distance functions and general utility metrics. Specifically, we com-
pare two metrics to EMD and study the impact on: (i) performance
and (ii) accuracy when pruning optimizations are employed.

7.1 Distance Functions
By default, SEEDB uses Earth Movers Distance (EMD) to com-

pute distance between the target and reference probability distri-
butions. However, as mentioned in Section 2, other distance func-
tions such as Euclidean distance, K-L divergence and J-S diver-
gence may also be used in place of EMD. Note that these are all
consistent distance functions, like we described in Section 4.2.

We applied each of these distance functions—Euclidean, K-L
divergence, and J-S divergence—to our test datasets and compared
the resulting visualization orders to that of EMD. We found a high
degree of agreement on the visualization orders produced by mul-
tiple distance functions. For example, for the census dataset, when
the visualization order produced by EMD was compared to that for
other distance functions, we found that: (a) 3 of the top-5 visualiza-
tions were output by all three distance functions, and 4 of the top-5
were output by two of three distance functions. (b) for k=10, 6 of
the top-10 visualizations were output by all three functions while
9 of the top-10 were output by two of the three distance functions.
We find similar agreement on the lowest ranked visualizations as
well.



Thus we find that the choice of specific function used to mea-
sure deviation is not crucial; the supported functions produce very
similar visualization orders.

7.2 Pruning on Other Utility Metrics
In Section 4.2, we described the two pruning strategies used by

SEEDB to rapidly discard low-utility views. As seen in Section 5,
our strategies work well for the EMD-based utility metric.

We now present results which indicate that our pruning strategies
are general and can support other utility metrics as well. To vali-
date this claim, we evaluate SEEDB using two other metrics: (a)
Euclidean distance (L2): like EMD, this is a deviation-based utility
metric. (b) Max deviation (MAX_DIFF): this metric measures the
maximum deviation between the normalized values for any group
in the query and reference distribution. This metric would, for ex-
ample, score the visualization in Figure 14a very highly.
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Figure 17: Latency and Accuracy for different Distance Functions

Figure 17a and Figure 17b respectively show the reduction in
latency and accuracy for EMD, L2 and MAX_DIFF. We observe
very similar trends with respect to reduction in latency and accu-
racy for all metrics. Since we have validated that pruning works
well with EMD, the results indicate that pruning can also handle
other metrics such as L2 and MAX_DIFF well. As mentioned in
Section 4.2, we posit that pruning techniques work for any consis-
tent utility metric where the estimate of the utility metric tends to
the real value as the sample size increases.

7.3 General Utility Metrics
In addition to deviation, there are several other aspects or dimen-

sions that need to be taken into account in order to make data-driven
recommendations even more powerful. Here, we list these dimen-
sions, and then describe how we augment SEEDB to incorporate
these dimensions. A full exploration of these dimensions and their
relative importance is left as future work.

The dimensions that determine the quality of a visualization rec-
ommendation include: 1. deviation from the baseline (deviation),
2. historical data (history), 3. variation in and distribution of the
data itself (data distribution), 4. types and properties of the differ-
ent attributes in the dataset (metadata), 5. visual qualities of the
visualization (aesthetics), 6. past history of interactions with this
user and other users (user preferences), and 7. meaning and relative
importance of attributes in the data (semantics). We now describe
how SEEDB can be augmented to support these dimensions within
the utility metric.

First, consider an extension of the utility metric U(Vi) denoted
as fD(Vi) = wd × Sd + wh × Sh + wl × Sl. Here, the first
component corresponds to the utility from Section 2 so that Sd =
S(P [Vi(DQ)], P [Vi(DR)]) takes into account the deviation be-
tween the target data and the reference (item 1 above). We can use
the same distance function S to also capture utility based on histor-
ical context. For instance, let Sh = S(P [Vi(DQ)], P [Vi(DC)])
where P [Vi(DC)] refers to the typical value of the distribution
P [Vi(DQ)], given historical data. For instance, when Vi refers to
sales of a particular chair in Boston, Vi(DC) could be sales of that

chair in Boston for the past 10 years. This measure would then al-
low us to identify whether the value for particular sales is deviating
significantly from past patterns and is therefore interesting (item 2
above). Finally, we can also use the distance function to capture
local trends. For instance, let Sl = S(P [Vi(DQ)], P ′[Vi(DQ)])
where P ′[Vi(DQ)] refers to the distribution P , but shifted slightly.
For instance, if the sensor readings in the last five minutes dif-
fer greatly for current readings, the utility of Vi would be high.
This component can capture the amount of rapid local changes that
have happened within the distribution corresponding to P [Vi(DQ)]
(item 3 above).

Next, we turn to the question of incorporating other recommen-
dation dimensions into our utility metric, beyond items 1–3 above
that are all distribution-based. Consider the following form of a
generalized utility metric:

U(Vi) = fMA(Vi)× fP (Vi)× fD(Vi)

Let fD(Vi) be the utility function measuring distribution-based util-
ity of Vi (items 1—3). We can then augment fD(Vi) with fMA(Vi)
and fP (Vi) capturing metadata and aesthetics (item 4 and 5), and
user preferences (item 6) respectively. For instance, fMA(Vi) can
capture best-practices about visualization and output a value ac-
cordingly. Similarly, let fP (Vi) be a function that models the users’
preference towards seeing visualization Vi. This function can take
into account past user history at both the individual and global lev-
els. For instance, if the analyst typically looks at sales over time,
fP (Vi) for sales over time may be high. Similarly, if sales is a
popular attribute across all data analysts, fP (Vi) could be large for
a Vi that depicts sales. We can also think of fP (Vi) as capturing
in a limited way semantics that can be mined from previous user
interactions. We note however that semantics (item 7 above) is one
dimension that an automated recommendation system will not be
able to capture fully.

In terms of the visualization recommendations, we find that fMA(Vi)
and P (Vi) are independent of the data distribution. Once a user
poses a query, we can merely reuse previously computed values for
these functions while making the recommendation. For SEEDB,
these functions amount merely to constants in the utility function
U(Vi) that would assign weights to each view. Thus, in this form,
SEEDB has been extended to incorporate other recommendation
dimensions into the utility metric without any changes to the SEEDB
framework.

8. RELATED WORK
SEEDB is draws on related work from multiple areas; we review

papers in each of the areas, and describe how they relate to SEEDB.
Visualization Tools: The visualization research community has in-
troduced a number of visual analytics tools such as Spotfire and
Tableau [37, 3]. These tools do provide some features for auto-
matically selecting the best visualization for a data set, but these
features are restricted to a set of aesthetic rules of thumb that guide
which visualization is most appropriate. Similar visual specifica-
tion tools have been introduced by the database community, e.g.,
Fusion Tables [10]. In all these tools, the user must choose the data
they want to visualize, requiring a tedious iteration through all sets
of attributes. For datasets with a large number of attributes, it is
often hard for the analyst to manually study every single attribute.
In contrast, in SEEDB, our goal is to automatically recommend
visualizations based on a generalized distance function, finding at-
tribute sets that maximize the value of this function.
Partial Automated Selection of Visualizations. Profiler detects
anomalies in data [18] and provides some visualization recommen-



dation functionality, but is restricted determining the best binning
for the for the x axis: in particular, it decides which granularity
is appropriate to bin on to depict the most interesting relationships
between data. Since this is a much simpler problem than ours, so-
phisticated techniques are not necessary. VizDeck [19] depicts all
possible 2-D visualizations of a dataset on a dashboard. Given that
VizDeck generates all visualizations, it is meant for small datasets;
additionally, [19] does not discuss techniques to speed-up the gen-
eration of these visualizations.
Scalable Visualizations. There has been some recent work on scal-
able visualizations that employ in-memory caching, sampling, and
pre-fetching to improve the interactivity of visualization systems
backed by databases (e.g., [8, 20]). Such techniques could be em-
ployed in our settings to further improve response times (although
some of these techniques, such as in-memory caching, can only
work with small datasets.)
Data Cube Materialization: Computations on data cubes [11]
involve aggregating across multiple dimensions. Even when the
number of attributes and number of distinct values of each attribute
is relatively small, the space required to materialize then entire cube
can be prohibitive, meaning that only a few (if any) dimensions can
be pre-aggregated. There has been some work on identifying, given
a query workload, which cubes to materialize within a certain stor-
age budget, so as to minimize the amount of work to be performed
when a query is provided [2, 12]. Hence, the optimization tech-
niques underlying cube materialization are similar in spirit to our
batching optimizations in Section 4.1, however, they focus on of-
fline computation of views to minimize storage rather than efficient
online optimization.
Browsing Data Cubes: There has been some work on using data
mining techniques to aid in the exploration of data cubes [31, 34,
32, 26]. Sarawagi et al. [33, 32] explored the question of finding
“interesting” cells in a cube. The interestingness of a cell is defined
by how surprising its value is given the other values in the cube:
[33] uses techniques based on a table analysis method while [32]
uses techniques based on entropy to find interesting cells. These
techniques generally identify sub-cubes of a cube that produce the
most deviation amongst all sub-cells, analogous to SeeDB finding
the (single) dimension attribute that shows the greatest variation
in a given aggregation query. In contrast, SeeDB focuses on find-
ing variation vis-a-vis a reference data set, recommending multiple
views over a large set of possible visualizations.

In [31], Sarawagi proposes techniques to explain an increase or
decrease in a specific aggregate by drilling down into that aggre-
gate. In constrast, SEEDB seeks to find interesting differences be-
tween two datasets that have not yet been aggregated along any
dimensions. Wu et al [41] tackle a similar problem in Scorpion,
and differ for similar reasons.
Multi-Query Optimization: Our batching optimizations draw on
related techniques from literature on shared scans [9] and multi-
query optimization (e.g. [35]). Our problem is simpler however,
since we don’t have to wait for a batch of queries to arrive and all
queries are simple aggregations. Finally, our pruning techniques
allow us to stop evaluating some visualizations if we find that their
utility is low, something other multi-query schemes cannot do.
Query Recommendation Systems: There is related work on rec-
ommending queries in databases (see [24]). Such systems are de-
signed to help users pose users relevant queries over of a database,
typically by consulting historical query workloads and using sta-
tistical similarity or recommender algorithms to refine user inputs.
These techniques focus on recommending SQL queries instead of
visualizations (and hence don’t focus on visually relevant utility

metrics.) We believe they could be integrated into a generalized
utility metric inside SeeDB, although a full user-study comparing
their effectiveness is outside the scope of this work.

9. CONCLUSIONS
Finding the right visualization given a query of interest is a labo-

rious and time-consuming task. In this paper, we presented SEEDB,
a visualization recommendation engine to help users rapidly iden-
tify interesting and useful visualizations of their data using a deviation-
based metric to highlight attributes with unusual variation. Our
implementation of SEEDB runs on top of a relational engine, and
employs two types of optimization techniques, sharing-based, and
pruning-based techniques, to obtain near-interactive performance.
These techniques help us reduce latency by a factor of 100X, with
the optimizations combining in a multiplicative way. Furthermore,
our user study shows that SEEDB provides useful visualizations,
that both help users find interesting visualizations with fewer itera-
tions, and that users find help as an augmentation to a visualization
system. In conclusion, SEEDB is an important first step in our ex-
ploration of automated visualization recommendation tools, paving
the way toward automating the tedium of data analysis.
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